| v

ERLANG

Tools

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Tools 2.9.1

March 14, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2017

Ericsson AB. All Rights Reserved.: Tools | 1

1.1 cover

1 Tools User's Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysistool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses akind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

emacs - (erlang.el and erlang-start.el)
This package provides support for the programming language Erlang in Emacs. The package provides an
editing mode with lots of bells and whistles, compilation support, and it makesit possible for the user to start
Erlang shells that run inside Emacs.

epr of
A time profiling tool; measure how timeis used in Erlang programs. Erlang programs. Predecessor of fpr of
(see below).

fprof

Another Erlang profiler; measure how timeis used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.
instrument
Utility functions for obtaining and analysing resource usage in an instrumented Erlang runtime system.
lent
A lock profiling tool for the Erlang runtime system.
make
A make utility for Erlang similar to UNIX make.
tags
A tool for generating Emacs TAGS files from Erlang sourcefiles.
xref
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.

1.1 cover

1.1.1 Introduction

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line is executed.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may be helpful when
looking for bottlenecks in the code.

1.1.2 Getting Started With Cover

Example
Assume that atest case for the following program should be verified:

-module(channel).

2 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

-behaviour(gen server).

-export([start link/0,stop/0]).

—export([alloc70,free/1]). % client interface
-export([init/1,handle call/3, terminate/2]).

start _link() ->

gen _server:start link({local,channel},channel,[],[]).

stop() ->
gen_server:call(channel,stop).

%%%-Client interface functions--------------------

alloc() ->
gen_server:call(channel,alloc).

free(Channel) ->

gen_server:call(channel, {free,Channel}).

%%%-gen_server callback functions-----------------

init(_Arg) ->
{ok,channels()}.

handle call(stop,Client,Channels) ->
{stop,normal,ok,Channels};

handle call(alloc,Client,Channels) ->
{Ch,Channels2} = alloc(Channels),
{reply, {ok,Ch},Channels2};

handle call({free,Channel},Client,Channels) ->

Channels2 = free(Channel, Channels),
{reply,ok,Channels2}.

terminate(Reason,Channels) ->
ok.

%%%-Internal functions---------------------~-~------

channels() ->
[chl,ch2,ch3].

alloc([Channel|Channels]) ->
{Channel, Channels};
alloc([]) ->
false.

free(Channel, Channels) ->
[Channel|Channels].

The test case isimplemented as follows:

-module(test).
-export([s/0]).
s() ->
{ok,Pid} = channel:start link(),
{ok,Ch1l} = channel:alloc(),
ok = channel:free(Chl),
ok = channel:stop().

callback functions

Ericsson AB. All Rights Reserved.: Tools | 3

1.1 cover

Preparation

First of all, Cover must be started. This spawns a process which owns the Cover database where all coverage data
will be stored.

1> cover:start().
{ok,<0.30.0>}

To include other nodes in the coverage analysis, use st art / 1. All cover compiled modules will then be loaded on
all nodes, and data from all nodes will be summed up when analysing. For simplicity this example only involves the
current node.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
moduleis not affected and no . beamfileis created.

2> cover:compile module(channel).
{ok, channel}

Each time a function in the Cover compiled module channel iscalled, information about the call will be added to
the Cover database. Run the test case:

3> test:s().
ok

Cover analysis is performed by examining the contents of the Cover database. The output is determined by two
parameters, Level and Anal ysi s. Anal ysi s is either cover age or cal | s and determines the type of the
analysis. Level iseither nodul e, functi on, cl ause, orl i ne and determines the level of the analysis.

Coverage Analysis

Analysisof type cover age isused to find out how much of the code has been executed and how much has not been
executed. Coverageisrepresented by atuple{ Cov, Not Cov} , where Cov isthe number of executablelinesthat have
been executed at least once and Not Cov is the number of executable lines that have not been executed.

If the analysis is made on module level, the result is given for the entire module as a tuple { Modul e,
{ Cov, Not Cov}}:

4> cover:analyse(channel, coverage,module).
{ok, {channel, {14,1}}}

For channel , the result shows that 14 lines in the module are covered but one line is not covered.

If the analysisis made on function level, the result is given as alist of tuples{ Funct i on, { Cov, Not Cov}}, one
for each function in the module. A function is specified by its module name, function name and arity:

5> cover:analyse(channel, coverage, function).
{ok, [{{channel,start link,0},{1,0}},
{{channel, stop,0},{1,0}},
{{channel,alloc,0},{1,0}},
{{channel, free,1},{1,0}},

4 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

{{channel, init,1},{1,0}},
{{channel, handle call,3},{5,0}},
{{channel, terminate,2},{1,0}},
{{channel, channels,0},{1,0}},
{{channel,alloc,1},{1,1}},
{{channel, free,2},{1,0}}1}

For channel , the result shows that the uncovered lineisin the function channel : al | oc/ 1.

If the analysis is made on clause level, the result is given as alist of tuples{ Cl ause, { Cov, Not Cov}}, onefor
each function clause in the module. A clauseis specified by its module name, function name, arity and position within
the function definition:

6> cover:analyse(channel, coverage,clause).

{ok, [{{channel,start link,0,1},{1,0}},
{{channel,stop,0,1},{1,0}},
{{channel,alloc,0,1},{1,0}},
{{channel, free,1,1},{1,0}},
{{channel,init,1,1},{1,0}},
{{channel, handle call,3,1},{1,0}},
{{channel, handle call,3,2},{2,0}},
{{channel, handle call,3,3},{2,0}},
{{channel, terminate,2,1},{1,0}},
{{channel, channels,0,1},{1,0}},
{{channel,alloc,1,1},{1,0}},
{{channel,alloc,1,2},{0,1}},
{{channel, free,2,1},{1,0}}1}

For channel , the result shows that the uncovered lineisin the second clause of channel : al | oc/ 1.

Finally, if the analysisis made on linelevel, theresult isgiven asalist of tuples{ Li ne, { Cov, Not Cov}}, onefor
each executable line in the source code. A lineis specified by its module name and line number.

7> cover:analyse(channel, coverage, line).

{ok, [{{channel,9},{1,0}},
{{channel,12},{1,0}},
{{channel,17},{1,0}},
{{channel,20},{1,0}},
{{channel, 25}, {1,0}},
{{channel,28},{1,0}},
{{channel, 31}, {1,0}},
{{channel, 32},{1,0}},
{{channel, 35}, {1,0}},
{{channel, 36}, {1,0}},
{{channel, 39}, {1,0}},
{{channel,44},{1,0}},
{{channel,47},{1,0}},
{{channel,49},{0,1}},
{{channel,52},{1,0}}1}

For channel , the result shows that the uncovered lineis line number 49.

Call Statistics

Analysis of type cal | s is used to find out how many times something has been called and is represented by an
integer Cal | s.

Ericsson AB. All Rights Reserved.: Tools | 5

1.1 cover

If the analysis is made on module level, the result is given as atuple { Modul e, Cal | s} . Here Cal | s isthe total
number of callsto functionsin the module:

8> cover:analyse(channel,calls,module).
{ok, {channel,12}}

For channel , the result shows that atotal of twelve calls have been made to functions in the module.

If the analysis is made on function level, the result is given as alist of tuples { Functi on, Cal | s} . HereCal | s
is the number of calls to each function:

9> cover:analyse(channel,calls, function).

{ok, [{{channel,start link,0},1},
{{channel, stop,0},1},
{{channel,alloc,0},1},
{{channel, free,1},1},
{{channel,init,1},1},
{{channel, handle call,3},3},
{{channel, terminate, 2}, 1},
{{channel, channels,0},1},
{{channel,alloc,1},1},
{{channel, free,2},1}1}

For channel , the result shows that handl e_cal | / 3 is the most called function in the module (three calls). All
other functions have been called once.

If the analysisis made on clause level, the result is given as alist of tuples{ O ause, Cal | s} . HereCal | s isthe
number of calls to each function clause:

10> cover:analyse(channel,calls,clause).

{ok, [{{channel,start link,0,1},1},
{{channel,stop,0,1},1},
{{channel,alloc,0,1},1},
{{channel, free,1,1},1},
{{channel,init,1,1},1},
{{channel, handle call,3,1},1},
{{channel, handle call,3,2},1},
{{channel, handle call,3,3},1},
{{channel, terminate,2,1},1},
{{channel, channels,0,1},1},
{{channel,alloc,1,1},1},
{{channel,alloc,1,2},0},
{{channel, free,2,1},1}1}

For channel, the result shows that all clauses have been caled once, except the second clause of
channel : al | oc/ 1 which has not been called at all.

Finaly, if the analysis is made on line level, the result is given as alist of tuples{ Li ne, Cal | s}.HereCal | s is
the number of times each line has been executed:

11> cover:analyse(channel,calls,line).
{ok, [{{channel,9},1},
{{channel, 12},1},
{{channel, 17},1},
{{channel,20},1},

6 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

{{channel, 25},1},
{{channel, 28},1},
{{channel,31},1},
{{channel, 32},1},
{{channel,35},1},
{{channel,36},1},
{{channel,39},1},
{{channel, 44} ,1},
{{channel,47},1},
{{channel, 49},0},
{{channel,52},1}1}

For channel , the result shows that all lines have been executed once, except line number 49 which has not been
executed at al.

Analysis to File

A linelevel cdlsanalysisof channel canbewrittentoafileusingcover: analysis to file/1:

12> cover:analyse to file(channel).
{ok, "channel.COVER.out"}

Thefunction createsacopy of channel . er | whereit for each executable line is specified how many timesthat line
has been executed. The output fileis called channel . COVER. out .

File generated from channel.erl by COVER 2001-05-21 at 11:16:38

>k ok >k >k ok ok >k ok ok >k 5k ok >k >k ok ok >k 5k ok >k >k ok >k K 5k >k >k 5k >k >k 5k ok >k >k ok >k >k 5k >k ok 5k ok >k >k ok >k >k 5k >k >k 5k >k >k 5k >k >k >k ok >k >k 5k >k >k >k >k >k >k >k >k >k 5k >k >k >k k >k

-module(channel).
-behaviour(gen_server).

-export([start link/0,stop/0]).
-export([alloc/0,free/1l]). % client interface
-export([init/1,handle call/3,terminate/2]). % callback functions

start link() ->

I
I
I
I
I
I
I
1..] gen_server:start_link({local,channel},channel,[],[]).
I
| stop() ->
1..] gen_server:call(channel,stop).
I
| %%%-Client interface functionS-------------- oo
I
| alloc() ->
1..] gen_server:call(channel,alloc).
I
| free(Channel) ->
1..] gen_server:call(channel, {free,Channel}).
I
| %%%-gen server callback functions--------------cooommmo
I
| init(Arg) ->
1..] {ok,channels()}.
I
| handle call(stop,Client,Channels) ->
1..] {stop,normal, ok,Channels};
I
I

handle call(alloc,Client,Channels) ->

Ericsson AB. All Rights Reserved.: Tools | 7

1.1 cover

1..]| {Ch,Channels2} = alloc(Channels),
1..]| {reply, {ok,Ch},Channels2};
I
| handle call({free,Channel},Client,Channels) ->
1..] Channels2 = free(Channel, Channels),
1..]| {reply,ok,Channels2}.
I
| terminate(_Reason,Channels) ->
1..]| ok.
I
| %%%-Internal functionS----------------““---- -
I
| channels() ->
1..] [chl,ch2,ch3].
I
| alloc([Channel|Channels]) ->
1..]| {Channel, Channels};
| alloc([]) ->
0..]| false.
I
| free(Channel, Channels) ->
1..] [Channel|Channels].
Conclusion

By looking at the results from the analyses, it can be deducted that the test case does not cover the case when al
channels are allocated and t est . er | should be extended accordingly.
Incidentally, when the test caseis corrected abug in channel should indeed be discovered.

When the Cover analysis is ready, Cover is stopped and all Cover compiled modules are unloaded. The code for
channel isnow loaded asusual from a. beamfilein the current path.

13> code:which(channel).
cover compiled

14> cover:stop().

ok

15> code:which(channel).
"./channel.beam"

1.1.3 Miscellaneous

Performance

Execution of code in Cover compiled modules is slower and more memory consuming than for regularly compiled
modules. As the Cover database contains information about each executable line in each Cover compiled module,
performance decreases proportionally to the size and number of the Cover compiled modules.

Toimprove performance when analysing cover resultsit is possible to do multiple callsto analyse and analyse _to file
at once. Y ou can aso use the async_analyse to file convenience function.

Executable Lines

Cover uses the concept of executable lines, which is lines of code containing an executable expression such as a
matching or a function call. A blank line or a line containing a comment, function head or pattern in a case- or
recei ve statement is not executable.

In the example below, lines number 2,4,6,8 and 11 are executable lines:

8 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

1: is loaded(Module,Compiled) ->

2 case get file(Module,Compiled) of
3 {ok,File} ->

4: case code:which(Module) of
5: ?TAG ->

6 {loaded,File};

7 >

8 unloaded

9: end;

10: false ->

11: false

12: end.

Code Loading Mechanism

When amoduleis Cover compiled, it isaso loaded using the normal code loading mechanism of Erlang. This means
that if a Cover compiled moduleisre-loaded during a Cover session, for exampleusing c(Modul e) , it will no longer
be Cover compiled.

Usecover:is_conpil ed/ 1orcode: whi ch/ 1toseeif amoduleisCover compiled (and still loaded) or not.

When Cover is stopped, all Cover compiled modules are unloaded.

1.2 cprof - The Call Count Profiler

cpr of isaprofiling tool that can be used to get a picture of how often different functionsin the system are called.

cpr of usesbreakpointssimilar to local call trace, but containing counters, to collect profiling data. Therfore thereis
no need for special compilation of any module to be profiled.

cpr of presents all profiled modules in decreasing total call count order, and for each module presents all profiled
functionsalsoindecreasing call count order. A call count limit can be specifiedto filter out all functionsbelow thelimit.

Profiling is done in the following steps:

cprof:start/0..3
Starts profiling with zeroed call counters for specified functions by setting call count breakpoints on them.
Mod: Fun()
Runs the code to be profiled.
cprof: pause/0..3
Pauses the call counters for specified functions. This minimises the impact of code running in the background
or inthe shell that disturbs the profiling. Call counters are automatically paused when they "hit the ceiling” of
the host machine word size. For a 32 bit host the maximum counter value is 2147483647.
cprof:anal yse/0..2
Collects call counters and computes the result.
cprof:restart/0..3
Restarts the call counters from zero for specified functions. Can be used to collect a new set of counters without
having to stop and start call count profiling.
cprof:stop/0..3
Stops profiling by removing call count breakpoints from specified functions.

Functions can be specified as either al in the system, al in one module, all arities of one function, one function, or all
functionsin al modules not yet loaded. Asfor now, BIFs cannot be call count traced.

The analysis result can either be for all modules, or for one module. In either case a call count limit can be given to
filter out the functionswith acall count below the limit. The all modules analysis does not contain the module cpr of
itself, it can only be analysed by specifying it as a single module to analyse.

Ericsson AB. All Rights Reserved.: Tools | 9

1.2 cprof - The Call Count Profiler

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradations in the vicinity of 10 percent.

The following sections show some examples of profiling with cpr of . See also cprof(3).

1.2.1 Example: Background work
From the Erlang shell:

1> cprof:start(), cprof:pause(). % Stop counters just after start
3476
2> cprof:analyse().
{30,
[{erl eval,11,
[{{erl eval,expr,3},3},
{{erl eval, '-merge bindings/2-fun-0-"',2},2},
{{erl _eval,expand module name,2},1},
{{erl eval,merge bindings,2},1},
{{erl eval,binding,?2},1},
{{erl eval,expr list,5},1},
{{erl eval,expr list,3},1},
{{erl eval,exprs,4},1}1},
{orddict,8,
[{{orddict,find,b2},6},
{{orddict,dict to list,1},1},
{{orddict,to list,1},1}]1},
{packages,7, [{{packages,is segmented 1,1},6},
{{packages,is segmented,1},1}1},
{lists,4,[{{lists,foldl,3},3},{{lists, reverse,1},1}]1}1}
3> cprof:analyse(cprof).
{cprof, 3, [{{cprof,tr,2},2},{{cprof,pause,0},1}]}
4> cprof:stop().
3476

The example showed the background work that the shell performsjust to interpret the first command line. Most work
isdoneby er| _eval andor ddi ct .

What is captured in this example isthe part of the work the shell does while interpreting the command line that occurs
between the actual callstocpr of : start () andcpr of : anal yse().

1.2.2 Example: One module
From the Erlang shell:

1> cprof:start(),R=calendar:day of the week(1896,4,27),cprof:pause(),R.
1
2> cprof:analyse(calendar).
{calendar,9,
[{{calendar,df,2},61},
{{calendar,dm,1},61},
{{calendar,dy,1},1},
{{calendar,last_day of_ the monthl,2},1},
{{calendar,last_day of_ the month,2},1},
{{calendar,is leap yearl,1},1},
{{calendar,is leap year,1},1},
{{calendar,day of the week,3},1},
{{calendar,date to gregorian days,3},1}]}
3> cprof:stop().

10 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

3271

The exampletellsusthat "Aktiebolaget LM Ericsson & Co" wasregistered on aMonday (since the return value of the
first command is 1), and that the cal endar module needed 9 function calls to calculate that.

Using cpr of : anal yse() in this example also shows approximately the same background work as in the first
example.

1.2.3 Example: In the code

Write amodule:

-module(sort).
-export([do/1]).

do(N) ->
cprof:stop(),
cprof:start(),
do(N, [1).

do(0, L) ->
R = lists:sort(L),
cprof:pause(),
R;
do(N, L) ->
do(N-1, [random:uniform(256)-1 | L]).

From the Erlang shell:

1> c(sort).
{ok,sort}
2> 1(random).
{module, random}
3> sort:do(1000).
[0101111111111!1!2l2:21313,3,3,3;4,4,4,5,5,5,5,6,6,6,6,6,6' .. .]
4> cprof:analyse().
{9050,
[{lists sort,6047,
[{{lists sort,merge3 2,6},923},
{{lists sort,merge3 1,6},879},
{{lists sort,split 2,5},661},
{{lists sort,rmerge3 1,6},580},
{{lists sort,rmerge3 2,6},543},
{{lists sort,merge3 12 3,6},531},
{{lists sort,merge3 21 3,6},383},
{{lists sort,split 2 1,6},338},
{{lists sort,rmerge3 21 3,6},299},
{{lists sort,rmerge3 12 3,6},205},
{{lists sort,rmerge2 2,4},180},
{{lists sort,rmerge2 1,4},171},
{{lists sort,merge2 1,4},127},
{{lists sort,merge2 2,4},121},
{{lists sort,mergel,2},79},
{{lists sort, rmergel,2},27}1},
{random, 2001,
[{{random,uniform,1},1000},
{{random,uniform,0},1000},
{{random, seed0,0},1}1},

Ericsson AB. All Rights Reserved.: Tools | 11

1.3 The Erlang mode for Emacs

{sort,1001, [{{sort,do,2},1001}]},
{lists, 1, [{{lists,sort,1},1}1}]}
5> cprof:stop().
5369

The example shows some details of how |i sts:sort/1 works. It used 6047 function calls in the module
lists_sort tocompletethe work.

Thistime, since the shell was not involved, no other work was done in the system during the profiling. If you retry the
same example with a freshly started Erlang emulator, but omit the command | (r andon) , the analysis will show a
lot more function calls done by code_ser ver and others to automatically load the moduler andom

1.3 The Erlang mode for Emacs

1.3.1 Purpose

The purpose of this user guideisto introduce you to the Erlang mode for Emacs and gives some relevant background
information of the functions and features. See also Erlang mode reference manual The purpose of the Erlang mode
itself isto facilitate the developing process for the Erlang programmer.

1.3.2 Pre-requisites
Basic knowledge of Emacs and Erlang/OTP.

1.3.3 Elisp

There are two Elisp modules included in this tool package for Emacs. Thereis erlang.el that defines the actual erlang
mode and there is erlang-start.el that makes some nice initializations.

1.3.4 Setup on UNIX

To set up the Erlang Emacs mode on a UNIX systems, edit/create thefile. emacs in the your home directory.

Below is a complete example of what should be added to a user's . enacs provided that OTP is instaled in the
directory / usr/1 ocal /ot p :

(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
load-path))

(setq erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))

(require 'erlang-start)

1.3.5 Setup on Windows

To set up the Erlang Emacs mode on a Windows systems, edit/create thefile . enacs, thelocation of the file depends
on the configuration of the system. If the HOME environment variable is set, Emacswill look for the. enacs filein
the directory indicated by the HOME variable. If HOME is not set, Emacs will ook for the. enacs filein C: \

Below is a complete example of what should be added to a user's . enacs provided that OTP is installed in the
directory C: \ Program Fi | es\ er| <Ver >:

(setg load-path (cons "C:/Program Files/erl<Ver>/1lib/tools-<ToolsVer>/emacs"
load-path))

12 | Ericsson AB. All Rights Reserved.: Tools

1.3 The Erlang mode for Emacs

(setq erlang-root-dir "C:/Program Files/erl<Ver>")
(setq exec-path (cons "C:/Program Files/erl<Ver>/bin" exec-path))
(require 'erlang-start)

Note:

In .emacs, the slash character "/* can be used as path separator. But if you decide to use the backs ash character
"\", please not that you must use double backslashes, since they are treated as escape characters by Emacs.

1.3.6 Indentation

The "Oxford Advanced Learners Dictionary of Current English” says the following about the word "indent":

"start (a line of print or writing) farther from the margin than the others’.

The Erlang mode does, of course, provide this feature. The layout used is based on the common use of the language.
It is strongly recommend to use this feature and avoid to indent lines in a nonstandard way. Some motivations are:

e Code using the same layout is easy to read and maintain.
» Since several features of Erlang mode is based on the standard layout they might not work correctly if a
nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If some lines use nonstandard indentation
they will be reindented.

1.3.7 Editing

e Mx erl ang-node RET - Thiscommand activates the Erlang major mode for the current buffer. When this
mode is active the mode line contain the word "Erlang”.

When the Erlang mode is correctly installed, it is automatically activated when afile endingin. erl or. hrl is
opened in Emacs.

When afileissaved thenameinthe- nodul e() . lineischecked against the file name. Should they mismatch Emacs
can change the module specifier so that it matches the file name. By default, the user is asked before the change is
performed.

An "éelectric" command is acharacter that in addition to just inserting the character performs some type of action. For
example the";" character is typed in a situation where is ends a function clause a new function header is generated.
The electric commands are as follows:

e« erlang-el ectric-comma - Insert acomma character and possibly a new indented line.
e erlang-el ectric-sem col on - Insert asemicolon character and possibly a prototype for the next line.
« erlang-electric-gt -"Insert a"™>"-sign and possible a new indented line.

To disableall electric commands set thevariableer | ang- el ect ri c- comrands to the empty list. In short, place
thefollowing linein your . emacs-file:

(setqg erlang-electric-commands '())

Ericsson AB. All Rights Reserved.: Tools | 13

1.3 The Erlang mode for Emacs

1.3.8 Syntax highlighting

It is possible for Emacs to use colors when displaying a buffer. By "syntax highlighting”, we mean that syntactic
components, for example keywords and function names, will be colored.

The basic idea of syntax highlighting is to make the structure of a program clearer. For example, the highlighting will
make it easier to spot simple bugs. Have not you ever written avariable in lower-case only? With syntax highlighting
avariable will colored while atoms will be shown with the normal text color.

1.3.9 Tags

Tags is a standard Emacs package used to record information about source files in large development projects. In
addition to listing the files of a project, atags file normally contains information about all functions and variables that
are defined. By far, the most useful command of the tags system isits ability to find the definition of functionsin any
filein the project. However the Tags system is not limited to this feature, for example, it is possible to do atext search
in al filesin a project, or to perform a project-wide search and replace.

In order to usethe Tags system afile named TAGS must be created. Thefile can be seen asadatabase over all functions,
records, and macrosin all filesin the project. The TAGS file can be created using two different methods for Erlang.
Thefirst is the standard Emacs utility "etags’, the second is by using the Erlang modulet ags.

1.3.10 Etags

et ags isaprogram that is part of the Emacs distribution. It is normally executed from a command line, like a unix
shell or a DOS box.

Theet ags program of fairly modern versions of Emacs and X Emacs has native support for Erlang. To check if your
version doesinclude this support, issue the command et ags - - hel p at athe command line prompt. At the end of
the help text there is a list of supported languages. Unless Erlang is a member of thislist | suggest that you should
upgrade to a newer version of Emacs.

As seen in the help text -- unless you have not upgraded your Emacs yet (well, what are you waiting around here for?
Off you go and upgrade!) -- et ags associate the file extensions. er | and. hr | with Erlang.

Basically, the et ags utility isran using the following form:

etags filel.erl file2.erl

Thiswill create afile named TAGS in the current directory.

The et ags utility can also read alist of files from its standard input by supplying a single dash in place of the file
names. This feature is useful when a project consists of alarge number of files. The standard UNIX command f i nd
can be used to generate the list of files, e.g:

find . -name "*.[he]rl" -print | etags -

The above line will create a TAGS file covering all the Erlang source files in the current directory, and in the
subdirectories below.

Please see the GNU Emacs Manua and the etags man page for moreinfo.

14 | Ericsson AB. All Rights Reserved.: Tools

1.4 fprof - The File Trace Profiler

1.3.11 Shell

The look and feel on an Erlang shell inside Emacs should be the same as in a normal Erlang shell. There isjust one
major difference, the cursor keys will actually move the cursor around just like in any normal Emacs buffer. The
command line history can be accessed by the following commands:

e Cup orMp (com nt-previous-input)-Moveto thepreviouslineintheinput history.

e Cdown orMn (conint-next-input)-Movetothenextlineintheinput history.

If the Erlang shell buffer would be killed the command line history is saved to afile. The command line history is
automatically retrieved when a new Erlang shell is started.

1.3.12 Compilation

The classic edit-compile-bugfix cycle for Erlang is to edit the source file in an editor, save it to afile and switch to
an Erlang shell. In the shell the compilation command is given. Should the compilation fail you have to bring out the
editor and locate the correct line.

With the Erlang editing mode the entire edit-compile-bugfix cycle can be performed without leaving Emacs. Emacs
can order Erlang to compile afile and it can parse the error messages to automatically place the point on the erroneous
lines.

1.4 fprof - The File Trace Profiler

f pr of isaprofiling tool that can be used to get a picture of how much processing time different functions consumes
and in which processes.

f pr of uses tracing with timestamps to collect profiling data. Therfore there is no need for special compilation of
any module to be profiled.

f pr of presentswall clock times from the host machine OS, with the assumption that OS scheduling will randomly
load the profiled functions in a fair way. Both own time i.e the time used by a function for its own execution, and
accumulated timei.e execution time including called functions.

Profiling is essentially donein 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph.

2
Profiling; the trace file isread and raw profile datais collected into an internal RAM storage on the node.
During this step the trace data may be dumped in text format to file or console.

3

Analysing; the raw profile datais sorted and dumped in text format either to file or console.

Since f pr of uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especialy not for programs that use the filesystem heavily by themselves. Where you place the trace file is also
important, e.g on Solaris/ t np is usually a good choice, while any NFS mounted disk is alousy choice.

Fprof can also skip the file step and trace to atracer process of its own that does the profiling in runtime.
The following sections show some examples of how to profile with Fprof. See a so the reference manual fprof(3).

1.4.1 Profiling from the source code

If you can edit and recompile the source code, it is convenient to insert fprof:trace(start) and
fprof:trace(stop) beforeand after the code to be profiled. All spawned processes are also traced. If you want
some other filename than the default try f prof : trace(start, "ny_fprof.trace").

Ericsson AB. All Rights Reserved.: Tools | 15

1.5 lcnt - The Lock Profiler

Then read the trace file and create the raw profile data with fprof:profile(), or perhaps
fprof:profile(file, "ny_fprof.trace") for non-default filename.

Finaly create an informative table dumped on the console with f prof:anal yse(), or on file with
f prof:anal yse(dest, []),orperhapsevenf prof:anal yse([{dest, "my_fprof.analysis"},
{col s, 120}]) for awider listing on non-default filename.

See the fprof(3) manual page for more options and arguments to the functions trace, profile and analyse.

1.4.2 Profiling a function

If you have one function that does the task that you want to profile, and the function returns when the profiling should
stop, it isconvenient to usef pr of : appl y(Modul e, Function, Args) andrelated for the tracing step.

If the tracing should continue after the function returns, for example if it is a start function that spawns processes to
be profiled, you canusef prof : appl y(M F, Args, [continue | O herOpts]).Thetracinghastobe
stopped at a suitable later timeusing f pr of : t race(st op) .

1.4.3 Immediate profiling

Itisalso possibleto trace immediately into the profiling process that createsthe raw profile data, that isto short circuit
the tracing and profiling steps so that the filesystem is not used.

Do something like this:

{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}l),
%% Code to profile

fprof:trace(stop);

This puts less |oad on the filesystem, but much more on the Erlang runtime system.

1.5 lcnt - The Lock Profiler

Internally in the Erlang runtime system locks are used to protect resources from being updated from multiple threads
in afatal way. Locks are necessary to ensure that the runtime system works properly but it also introduces a couple
of limitations. Lock contention and locking overhead.

With lock contention we mean when one thread locks a resource and another thread, or threads, tries to acquire the
same resource at the same time. The lock will deny the other thread access to the resource and the thread will be
blocked from continuing its execution. The second thread hasto wait until the first thread has compl eted its access to
the resource and unlocked it. Thel cnt tool measures these lock conflicts.

Locks has an inherent cost in execution time and memory space. It takestimeinitialize, destroy, aquiring or releasing
locks. To decrease lock contention it some times necessary to use finer grained locking strategies. This will usually
also increase the locking overhead and hence there is a tradeoff between lock contention and overhead. In general,
lock contention increases with the number of threads running concurrently. Thel cnt tool does not measure locking
overhead.

1.5.1 Enabling lock-counting

For investigation of locks in the emulator we use an internal tool called | cnt (short for lock-count). The VM needs
to be compiled with this option enabled. To enable this, use:

cd $ERL TOP

16 | Ericsson AB. All Rights Reserved.: Tools

1.5 lcnt - The Lock Profiler

./configure --enable-lock-counter

Another way to enable this alongside a normal VM is to compile it a emulator directory level, much like a debug
build. To compileit this way do the following,

cd $ERL TOP/erts/emulator
make lcnt FLAVOR=smp

and then starting Erlang with,
$ERL _TOP/bin/cerl -lcnt

To verify that you lock-counting enabled check that [| ock- count i ng] appears in the status text when the VM
is started.

Erlang R13BO3 (erts-5.7.4) [source] [64-bit] [smp:8:8] [rq:8] [async-threads:0] [hipe]
[kernel-poll:false] [lock-counting]

1.5.2 Getting started

Once you have alock counting enabled VM the module | cnt can be used. The module is intended to be used from
the current running nodes shell. To access remote nodesusel cnt : cl ear (Node) andl cnt : col | ect (Node) .

All locks are continuously monitored and its statistics updated. Use | cnt : ¢l ear/ O to initialy clear all counters
before running any specific tests. This command will also reset the duration timer internally.

Toretrievelock statisticsinformation use, | cnt : col | ect/ 0, 1. Thecollect operation will start al cnt server if it
not already started. All collected datawill be built into an erlang term and uploaded to the server and a duration time
will also be uploaded. This duration isthetime between| cnt: cl ear/ 0, 1 andl cnt: col | ect/ 0, 1.

Once the data is collected to the server it can be filtered, sorted and printed in many different ways.
See the reference manual for a description of each function.

1.5.3 Example of usage
From the Erlang shell:

Erlang R13B03 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipel
[kernel-poll:false] [lock-counting]
1> lcnt:rt opt({copy save, true}).
false
2> lcnt:clear(), big:bang(1000), lcnt:collect().
ok
3> lent:conflicts().
lock id #tries #collisions collisions [%] time [us] duration [%]

alcu_allocator 50 4113692 158921 3.8632 215464 4.4962
pix_lock 256 4007140 4882 0.1218 12221 0.2550

Ericsson AB. All Rights Reserved.: Tools | 17

1.5 lcnt - The Lock Profiler

run_queue 8 2287246 6949 0.3038 9825 0.2050

proc_main 1029 3115778 25755 0.8266 1199 0.0250

proc_msgq 1029 2467022 1910 0.0774 1048 0.0219

proc_status 1029 5708439 2435 0.0427 706 0.0147

message pre_alloc lock 8 2008569 134 0.0067 90 0.0019
timeofday 1 54065 8 0.0148 22 0.0005

gc_info 1 7071 7 0.0990 5 0.0001

ok

Another way to to profile a specific function is to use | cnt: apply/3 or | cnt:apply/1 which does
I cnt: cl ear/ O beforethefunctionand| cnt : col | ect/ O after itsinvocation. It also setscopy_save tot r ue
for the duration of the function call

Erlang R13B0O3 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipel
[kernel-poll:false] [lock-counting]
1> lcnt:apply(fun() -> big:bang(1000) end).
4384.338
2> lent:conflicts().
lock id #tries #collisions collisions [%] time [us] duration [%]

alcu allocator 50 4117913 183091 4.4462 234232 5.1490
run_queue 8 2050398 3801 0.1854 6700 0.1473

pix lock 256 4007080 4943 0.1234 2847 0.0626

proc_main 1028 3000178 28247 0.9415 1022 0.0225

proc _msgq 1028 2293677 1352 0.0589 545 0.0120

proc_status 1028 5258029 1744 0.0332 442 0.0097

message pre _alloc lock 8 2009322 147 0.0073 82 0.0018
timeofday 1 48616 9 0.0185 13 0.0003

gc_info 1 7455 12 0.1610 9 0.0002

ok

The process locks are sorted after its class like all other locks. It is convenient to look at specific processes and ports
as classes. We can do this by swapping class and class identifierswith | cnt : swap_pi d_keys/ 0.

3> lent:swap pid keys().

ok

4> lcnt:conflicts([{print, [name, tries, ratio, time]}1).
lock #tries collisions [%] time [us]

alcu allocator 4117913 4.4462 234232
run_queue 2050398 0.1854 6700

pix lock 4007080 0.1234 2847
message pre alloc lock 2009322 0.0073 82
<nonode@nohost.660.0> 13493 1.4452 41
<nonode@nohost.724.0> 13504 1.1404 36
<nonode@nohost.803.0> 13181 1.6235 35
<nonode@nohost.791.0> 13534 0.8202 22
<nonode@nohost.37.0> 8744 5.8326 22
<nonode@nohost.876.0> 13335 1.1174 19
<nonode@nohost.637.0> 13452 1.3678 19
<nonode@nohost.799.0> 13497 1.8745 18
<nonode@nohost.469.0> 11009 2.5343 18
<nonode@nohost.862.0> 13131 1.2566 16
<nonode@nohost.642.0> 13216 1.7327 15
<nonode@nohost.582.0> 13156 1.1098 15
<nonode@nohost.622.0> 13420 0.7303 14
<nonode@nohost.596.0> 13141 1.6437 14
<nonode@nohost.592.0> 13346 1.2064 13
<nonode@nohost.526.0> 13076 1.1701 13

18 | Ericsson AB. All Rights Reserved.: Tools

1.5 lcnt - The Lock Profiler

ok

1.5.4 Example with Mnesia Transaction Benchmark
From the Erlang shell:

Erlang R13B03 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipel
[kernel-poll:false] [lock-counting]

Eshell V5.7.4 (abort with 7G)
1> Conf=[{db nodes, [node()]}, {driver nodes, [node()]}, {replica nodes, [node()]1},
{n_drivers per node, 10}, {n branches, 1000}, {n accounts per branch, 10},
{replica type, ram copies}, {stop after, 60000}, {reuse history id, true}].
[{db _nodes, [nonode@nohost]},
{driver nodes, [nonode@nohost]},
{replica nodes, [nonode@nohost]},
{n_drivers per node, 10},
{n_branches, 1000},
{n_accounts per branch, 10},
{replica type, ram copies},
{stop_after, 60000},
{reuse history id,true}]
2> mnesia tpcb:init([{use running mnesia, false}|Conf]).
ignore

Initial configuring of the benchmark is done. It istime to profile the actual benchmark and Mnesia

3> lent:apply(fun() -> {ok,{time, Tps, , , , }} = mnesia tpcb:run([{use running mnesia,

true}|Conf]), Tps/60 end).
12037.483333333334

ok

4> lcnt:swap pid keys().

ok

Thei d header represents the number of unique identifiers under a class when the option { conbi ne,

true} is

used (whichison by default). It will otherwise show the specific identifier. Thedb_t ab listing shows 722287 unique

locks, it is one for each ets-table created and Mnesia creates one for each transaction.

5> lcnt:conflicts().

lock id #tries #collisions collisions [%] time [us] duration [%]

alcu allocator 50 56355118 732662 1.3001 2934747 4.8862

db_tab 722287 94513441 63203 0.0669 1958797 3.2613

timeofday 1 2701048 175854 6.5106 1746079 2.9071

pix_ lock 256 24306168 163214 0.6715 918309 1.5289

run_queue 8 11813811 152637 1.2920 357040 0.5945

message pre alloc lock 8 17671449 57203 0.3237 263043 0.4380
mnesia locker 4 17477633 1618548 9.2607 97092 0.1617

mnesia tm 4 9891408 463788 4.6888 86353 0.1438

gc_info 1 823460 628 0.0763 24826 0.0413

meta main tab slot 16 41393400 7193 0.0174 11393 0.0190
<nonode@nohost.1108.0> 4 4331412 333 0.0077 7148 0.0119
timer wheel 1 203185 30 0.0148 3108 0.0052
<nonode@nohost.1110.0> 4 4291098 210 0.0049 885 0.0015
<nonode@nohost.1114.0> 4 4294702 288 0.0067 442 0.0007
<nonode@nohost.1113.0> 4 4346066 235 0.0054 390 0.0006

Ericsson AB. All Rights Reserved.: Tools | 19

1.5 lcnt - The Lock Profiler

<nonode@nohost.1106.0> 4 4348159 287 0.0066 379 0.0006
<nonode@nohost.1111.0> 4 4279309 290 0.0068 325 0.0005
<nonode@nohost.1107.0> 4 4292190 302 0.0070 315 0.0005
<nonode@nohost.1112.0> 4 4208858 265 0.0063 276 0.0005
<nonode@nohost.1109.0> 4 4377502 267 0.0061 276 0.0005
ok

Thelisting shows rmesi a_| ocker , aprocess, has highly contended locks.

6> lcnt:inspect(mnesia locker).

lock id #tries #collisions collisions [%] time [us] duration [%]

mnesia locker proc msgq 5449930 59374 1.0894 69781 0.1162
mnesia locker proc main 4462782 1487374 33.3284 14398 0.0240
mnesia locker proc status 7564921 71800 0.9491 12913 0.0215
mnesia locker proc link 0 0 0.0000 0 0.0000

ok

Listing without class combiner.

7> lcnt:conflicts([{combine, false}, {print, [name, id, tries, ratio, timel}l).

lock id #tries collisions [%] time [us]

db tab mnesia transient decision 722250 3.9463 1856852

timeofday undefined 2701048 6.5106 1746079

alcu allocator ets alloc 7490696 2.2737 692655

alcu allocator ets alloc 7081771 2.3294 664522

alcu allocator ets alloc 7047750 2.2520 658495

alcu allocator ets alloc 5883537 2.3177 610869
pix_lock 58 11011355 1.1924 564808

pix_lock 60 4426484 0.7120 262490

alcu allocator ets alloc 1897004 2.4248 219543

message pre alloc lock undefined 4211267 0.3242 128299
run_queue 3 2801555 1.3003 116792

run_queue 2 2799988 1.2700 100091

run_queue 1 2966183 1.2712 78834

mnesia locker proc_msgq 5449930 1.0894 69781

message pre alloc lock undefined 3495672 0.3262 65773
message pre alloc lock undefined 4189752 0.3174 58607
mnesia tm proc_msgq 2094144 1.7184 56361

run_queue 4 2343585 1.3115 44300

db_tab branch 1446529 0.5229 38244

gc_info undefined 823460 0.0763 24826

ok

In this scenario the lock that protects ets-tablermesi a_t r ansi ent _deci si on has spent most of itswaiting for.
That is 1.8 secondsin atest that run for 60 seconds. Thetimeis also spread on eight different scheduler threads.

8> lcnt:inspect(db _tab, [{print, [name, id, tries, colls, ratio, duration]}]).

lock id #tries #collisions collisions [%] duration [%]
db_tab mnesia transient decision 722250 28502 3.9463 3.0916
db_tab branch 1446529 7564 0.5229 0.0637
db_tab account 1464500 8203 0.5601 0.0357
db_tab teller 1464529 8110 0.5538 0.0291
db_tab history 722250 3767 0.5216 0.0232
db_tab mnesia stats 750332 7057 0.9405 0.0180

20 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

db_tab mnesia trans store 61 0 0.0000 0.0000
db_tab mnesia trans store 61 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
ok

1.5.5 Deciphering the output

Typicaly hight i me valuesare bad and thisis often the thing to look for. However, one should also look for high lock
acquisition frequencies (#tries) since locks generate overhead and because high frequency could become problematic
if they begin to have conflicts even if it is not shown in a particular test.

1.5.6 See Also
LCNT Reference Manual

1.6 Xref - The Cross Reference Tool

Xref isacross reference tool that can be used for finding dependencies between functions, modules, applications and
releases. It does so by analyzing the defined functions and the function calls.

In order to make Xref easy to use, there are predefined analyses that perform some common tasks. Typically, amodule
or arelease can be checked for calls to undefined functions. For the somewhat more advanced user there is a small,
but rather flexible, language that can be used for selecting parts of the analyzed system and for doing some simple
graph analyses on selected calls.

The following sections show some features of Xref, beginning with a module check and a predefined analysis. Then
follow examples that can be skipped on the first reading; not all of the concepts used are explained, and it is assumed
that the reference manual has been at least skimmed.

1.6.1 Module Check

Assume we want to check the following module:

-module(my_module) .
-export([t/1]).

t(A) ->
my module:t2(A).

t2() ->
true.

Cross reference data are read from BEAM files, so the first step when checking an edited module is to compileit:

Ericsson AB. All Rights Reserved.: Tools | 21

1.6 Xref - The Cross Reference Tool

1> c(my_module, debug info).
./my_module.erl:10: Warning: function t2/1 is unused
{ok, my module}

The debug_i nf o option ensures that the BEAM file contains debug information, which makes it possible to find
unused local functions.

The module can now be checked for calls to deprecated functions, calls to undefined functions, and for unused local
functions:

2> xref:m(my_module)

[{deprecated, []},

{undefined, [{{my module,t,1},{my module,t2,1}}1},
{unused, [{my module,t2,1}]}]

ni 1 is also suitable for checking that the BEAM file of a module that is about to be loaded into a running a system
does not call any undefined functions. In either case, the code path of the code server (see the module code) is used
for finding modul esthat export externally called functions not exported by the checked moduleitself, so called library
modules.

1.6.2 Predefined Analysis

In thelast example the module to analyze was given asan argument to n1 1, and the code path was (implicitly) used as
library path. In this example an xref server will be used, which makes it possible to analyze applications and rel eases,
and also to select the library path explicitly.

Each Xref server is referred to by a unique name. The name is given when creating the server:

1> xref:start(s).
{o0k,<0.27.0>}

Next the system to be analyzed is added to the Xref server. Here the system will be OTP, so no library path will be
needed. Otherwise, when analyzing a system that uses OTP, the OTP modules are typically made library modules
by setting the library path to the default OTP code path (or to code_pat h, see the reference manual). By default,
the names of read BEAM files and warnings are output when adding analyzed modules, but these messages can be
avoided by setting default values of some options:

2> xref:set default(s, [{verbose,false}, {warnings,false}]).
ok

3> xref:add release(s, code:lib dir(), {name, otp}).
{ok,otp}

add_r el ease/ 3 assumes that all subdirectories of the library directory returned by code: i b_di r () contain
applications; the effect is that of reading all applications BEAM files.

It is now easy to check the release for calls to undefined functions:
4> xref:analyze(s, undefined function calls).

{ok, [...]1}

We can now continue with further analyses, or we can delete the Xref server:

22 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

5> xref:stop(s).

The check for calls to undefined functions is an example of a predefined analysis, probably the most useful one.
Other examples are the analyses that find unused local functions, or functions that call some given functions. See the
analyze/2,3 functions for a complete list of predefined analyses.

Each predefined analysis is a shorthand for a query, a sentence of atiny language providing cross reference data as
values of predefined variables. The check for callsto undefined functions can thus be stated as a query:

4> xref:

q(s, "(XC - UC) || (XU - X - B)").
{ok,[...1}

The query asks for the restriction of external calls except the unresolved calls to calls to functions that are externally
used but neither exported nor built-in functions (the | | operator restricts the used functions while the | operator

restricts the calling functions). The - operator returns the difference of two sets, and the + operator to be used below
returns the union of two sets.

The relationships between the predefined variables XU, X, B and a few others are worth elaborating upon. The
reference manual mentions two ways of expressing the set of all functions, one that focuses on how they are defined:
X + L + B + U, and one that focuses on how they are used: UU + LU + XU. The reference also mentions
some facts about the variables:

e FisequatoL + X(thedefined functions arethelocal functions and the external functions);

* Uisasubset of XU (the unknown functions are a subset of the externally used functions since the compiler
ensures that locally used functions are defined);

e Bisasubset of XU (callsto built-in functions are always external by definition, and unused built-in functions

areignored);

e LUisasubset of F (thelocally used functions are either local functions or exported functions, again ensured by
the compiler);

e WUisequaltoF - (XU + LU) (theunused functions are defined functions that are neither used externally
nor locally);

e UUisasubset of F (the unused functions are defined in analyzed modules).
Using these facts, the two small circles in the picture below can be combined.

Ericsson AB. All Rights Reserved.: Tools | 23

1.6 Xref - The Cross Reference Tool

ah
N

Definition

Definition and U=e

Uz

Figure 6.1: Definition and use of functions

It is often clarifying to mark the variables of a query in such a circle. This is illustrated in the picture below for
some of the predefined analyses. Note that local functions used by local functions only are not marked in the

| ocal s_not _used circle.

AU-X—H w—xu L #iJu 4+ 30— Lun
ondefined functions exports_nat_nsed locals_not_imed [simplified)
[roodules node=]

Figure 6.2: Some predefined analyses as subsets of all functions

24 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

1.6.3 Expressions

The module check and the predefined analyses are useful, but limited. Sometimes more flexibility is needed, for
instance one might not need to apply agraph analysison all calls, but some subset will do equally well. That flexibility
is provided with asimple language. Bel ow are some expressions of the language with comments, focusing on elements
of the language rather than providing useful examples. The analyzed system is assumed to be OTP, so in order to run
the queries, first evaluate these calls:

xref:start(s).
xref:add release(s, code:root dir()).

xref:q(s, "(Fun) xref : Md").

All functions of the xr ef module.
xref:q(s, "xref : Md * X').

All exported functions of the xr ef module. The first operand of the intersection operator * isimplicitly

converted to the more special type of the second operand.
xref:q(s, "(Md) tools").

All modules of the Tools application.
xref:q(s, '""xref_.*" : Mdd').

All modules with a name beginning with xr ef _.
xref:q(s, "# E| X").

Number of calls from exported functions.
xref:q(s, "XC || L ").

All external callsto local functions.
xref:q(s, "XC * LC").

All calls that have both an external and alocal version.
xref:q(s, "(LLin) (LC* XO").

The lines where the local calls of the last example are made.
xref:q(s, "(XLin) (LC* XO").

The lines where the external calls of the example before last are made.
xref:q(s, "XC* (ME - strict ME)").

External calls within some module.

xref:q(s, "E ||| kernel").
All callswithin the Kernel application.
xref:q(s, "closure E | kernel || kernel").

All direct and indirect calls within the Kernel application. Both the calling and the used functions of indirect
calls are defined in modules of the kernel application, but it is possible that some functions outside the kernel
application are used by indirect calls.
xref:q(s, "{tool bar, debugger}: Mod of ME").
A chain of module callsfromt ool bar todebugger, if thereissuch achain, otherwisef al se. Thechain
of callsisrepresented by alist of modules, t ool bar being the first element and debugger the last element.
xref:q(s, "closure E | tool bar:Md || debugger: Md").
All (in)direct callsfrom functionsint ool bar to functionsin debugger .
xref:q(s, "(Fun) xref -> xref_base").
All function callsfrom xr ef toxr ef _base.
xref:q(s, "E * xref -> xref_base").
Same interpretation as last expression.
xref:q(s, "E || xref_base | xref").
Same interpretation as last expression.
xref:q(s, "E * [xref -> lists, xref_base -> digraph]").
All function callsfrom xr ef tol i st s, and al function callsfrom xr ef _base todi gr aph.

Ericsson AB. All Rights Reserved.: Tools | 25

1.6 Xref - The Cross Reference Tool

xref:q(s, "E | [xref, xref_base] || [lists, digraph]").
All function callsfrom xr ef andxr ef _base tol i st s anddi gr aph.
xref:q(s, "conponents EE").
All strongly connected components of the Inter Call Graph. Each component is a set of exported or unused
local functions that call each other (in)directly.
xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))").
All exported functions of the di gr aph module used (in)directly by some function indi gr aph.
xref:q(s, "L * yeccparser: Mod - range (closure (E |
yeccparser: Mdd) | (X * yeccparser:Md))").
The interpretation is left as an exercise.

1.6.4 Graph Analysis

The list representation of graphs is used analyzing direct calls, while the di gr aph representation is suited
for analyzing indirect calls. The restriction operators (|, || and | | |) are the only operators that accept both
representations. This means that in order to analyze indirect calls using restriction, the cl osur e operator (which
createsthe di gr aph representation of graphs) has to be applied explicitly.

As an example of analyzing indirect calls, the following Erlang function tries to answer the question: if we want to
know which modules are used indirectly by some module(s), is it worth while using the function graph rather than the
module graph? Recall that amodule M1 is said to call amodule M2 if there is some function in M1 that calls some
functionin M2. It would be nice if we could use the much smaller module graph, sinceit is available also in the light
weight nrodul esmode of Xref servers.

t(S) ->
{ok, } = xref:q(S, "Eplus := closure E"),
{ok, Ms} = xref:q(S, "AM"),
Fun = fun(M, N) ->
Q = io lib:format("# (Mod) (Eplus | ~p : Mod)", [M]),
{ok, N0} = xref:q(S, lists:flatten(Q)),
N + NO
end,
Sum = lists:foldl(Fun, 0, Ms),
ok = xref:forget(S, 'Eplus'),
{ok, Tot} = xref:q(S, "# (closure ME | AM)"),
100 * ((Tot - Sum) / Tot).

Comments on the code:

* Wewant to find the reduction of the closure of the function graph to modules. The direct expression for doing
that would be (Mbd) (cl osure E | AM, but then we would have to represent al of the transitive closure
of E in memory. Instead the number of indirectly used modulesis found for each analyzed module, and the sum
over all modulesis calculated.

» A user variable is employed for holding the di gr aph representation of the function graph for use in many
gueries. The reason is efficiency. As opposed to the = operator, the : = operator saves a value for subsegquent
analyses. Here might be the place to note that equal subexpressions within a query are evaluated only once; =
cannot be used for speeding things up.

e Eplus | ~p : Mod.The| operator convertsthe second operand to the type of the first operand. In this
case the module is converted to all functions of the module. It is necessary to assign atype to the module
(: Mod), otherwise moduleslike ker nel would be converted to all functions of the application with the same
name; the most general constant is used in cases of ambiguity.

» Sincewe are only interested in aratio, the unary operator # that counts the elements of the operand is used. It
cannot be applied to the di gr aph representation of graphs.

26 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

* Wecould find the size of the closure of the module graph with aloop similar to one used for the function graph,
but since the module graph is so much smaller, a more direct method is feasible.

When the Erlang function t / 1 was applied to an Xref server loaded with the current version of OTP, the returned
value was close to 84 (percent). This means that the number of indirectly used modules is approximately six times
greater when using the module graph. So the answer to the above stated question is that it is definitely worth while
using the function graph for this particular analysis. Finally, note that in the presence of unresolved calls, the graphs
may be incomplete, which means that there may be indirectly used modules that do not show up.

Ericsson AB. All Rights Reserved.: Tools | 27

1.6 Xref - The Cross Reference Tool

2 Reference Manual

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysistool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses akind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

erlang.el- Erlang mode for Emacs
Editing support such as indentation, syntax highlighting, electric commands, module name verification,
comment support including paragraph filling, skeletons, tags support and more for erlang source code.

epr of
A time profiling tool; measure how timeis used in Erlang programs. Predecessor of fprof (see below).
fprof

Another Erlang profiler; measure how timeis used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.
instrument
Utility functions for obtaining and analysing resource usage in an instrumented Erlang runtime system.
lent
A lock profiling tool for the Erlang runtime system.
make
A make utility for Erlang similar to UNIX make.
tags
A tool for generating Emacs TAGS files from Erlang sourcefiles.
xref
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.

28 | Ericsson AB. All Rights Reserved.: Tools

cover

cover

Erlang module

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line of code is executed when a program isrun.

An executableline contains an Erlang expression such asamatching or afunction call. A blank line or aline containing
acomment, function head or patterninacase- or r ecei ve statement is not executable.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may also be helpful
when looking for bottlenecks in the code.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
moduleis not affected and no . beamfileis created.

Each time afunction in aCover compiled moduleis called, information about the call is added to an internal database
of Cover. The coverage analysisis performed by examining the contents of the Cover database. The output Answer
is determined by two parameters, Level and Anal ysi s.

e Level = nodule

Answer = {Modul e, Val ue}, where Modul e isthe module name.
e Level = function
Answer = [{Functi on, Val ue}], onetuplefor each function in the module. A function is specified by its
module name M function name F and arity Aasatuple{ M F, A}.
* Level = clause
Answer = [{C ause, Val ue}], onetuplefor each clauseinthe module. A clauseis specified by its module
name M function name F, arity A and position in the function definition Casatuple{ M F, A, C} .
e Level =1line
Answer = [{Line, Val ue}], one tuple for each executable line in the module. A line is specified by its
module name Mand line number in the source fileNasatuple{ M N} .
e Analysis = coverage
Val ue = { Cov, Not Cov} where Cov isthe number of executable linesin the module, function, clause or line
that have been executed at least once and Not Cov isthe number of executable linesthat have not been executed.
e Analysis = calls
Val ue = Cal | s whichisthe number of times the module, function, or clause has been called. In the case of
linelevel analysis, Cal | s isthe number of times the line has been executed.
Distribution

Cover can be used in a distributed Erlang system. One of the nodes in the system must then be selected as the main
node, and all Cover commands must be executed from this node. The error reason not _mai n_node isreturned if
an interface function is called on one of the remote nodes.

Usecover:start/1andcover: st op/ 1 toadd or remove nodes. The same Cover compiled code will beloaded
on each node, and analysis will collect and sum up coverage data results from all nodes.

To only collect data from remote nodes without stopping cover on those nodes, usecover : fl ush/ 1

If the connection to a remote node goes down, the main node will mark it as lost. If the node comes back it will be
added again. If the remote node was alive during the disconnected periode, cover data from before and during this
periode will be included in the analysis.

Ericsson AB. All Rights Reserved.: Tools | 29

cover

Exports

start() -> {ok,Pid} | {error,Reason}
Types.

Pid = pid()

Reason = {already_started, Pi d}

Starts the Cover server which owns the Cover internal database. This function is called automatically by the other
functionsin the module.

start(Nodes) -> {ok,StartedNodes} | {error,not main node}
Types:

Nodes = StartedNodes = [aton()]
Starts a Cover server on the each of given nodes, and loads al cover compiled modules.

compile(ModFiles) -> Result | [Result]
compile(ModFiles, Options) -> Result | [Result]
compile module(ModFiles) -> Result | [Result]
compile module(ModFiles, Options) -> Result | [Result]
Types.

ModFiles = ModFile | [ModFil e]

ModFile = Module | File

Modul e = atom()

File = string()

Options = [Option]

Option = {i,Dir} | {d, Macro} | {d, Macro, Val ue} | export_all

Seeconpil e: filel2.
Result = {ok, Module} | {error,File} | {error,not_main_node}

Compiles amodule for Cover analysis. The module is given by its module name Mbdul e or by itsfilenameFi | e.
The. er| extension may be omitted. If the module is located in another directory, the path has to be specified.

Opt i ons isalist of compiler optionswhich defaultsto[] . Only options defining include file directories and macros
arepassedtoconpi | e: fil e/ 2, everything elseisignored.

If the module is successfully Cover compiled, the function returns { ok, Modul e} . Otherwise the function returns
{error, Fil e}.Errorsand warnings are printed as they occur.

If alist of ModFi | es isgivenasinput, alist of Resul t will be returned. The order of the returned list is undefined.

Notethat theinternal databaseis(re-)initiated during the compilation, meaning any previously collected coverage data
for the module will belost.

compile directory() -> [Result] | {error,Reason}
compile directory(Dir) -> [Result] | {error,Reason}
compile directory(Dir, Options) -> [Result] | {error,Reason}
Types:
Dir = string()
Options = [Option]

30 | Ericsson AB. All Rights Reserved.: Tools

cover

Seeconpil e_nodul e/ 1, 2

Result = {ok, Mbdule} | {error,File} | {error,not_main_node}
Seeconpi |l e_nodul e/ 1, 2

Reason = eacces | enoent

Compilesall modules (. er | files)inadirectory Di r for Cover analysisthe sasmeway asconpi | e_nodul e/ 1, 2
and returns alist with the return values.

Di r defaults to the current working directory.

Thefunctionreturns{ er r or , eacces} if thedirectory isnot readableor { er r or , enoent } if thedirectory does
not exist.

compile beam(ModFiles) -> Result | [Result]
Types:
ModFiles = ModFile | [ModFil €]
ModFil e = Mbdul e | BeanfFile
Modul e atom)
Beantile = string()
Result = {ok, Mbdule} | {error,BeanFile} | {error, Reason}

Reason = non_existing | {no_abstract_code, BeanFil e} |
{encrypted_abstract _code, BeanFil e} |
{al ready_cover _conpi |l ed, no_beam f ound, Modul €} | not_nmai n_node

Does the same as conpi | e/ 1, 2, but uses an existing . beamfile as base, i.e. the module is not compiled from
source. Thusconpi | e_beani 1 isfaster thanconpi | e/ 1, 2.

Notethat the existing . beamfile must contain abstract code, i.e. it must have been compiled withthedebug_i nf o
option. If not, the error reason { no_abst r act _code, BeantFi | e} isreturned. If the abstract code is encrypted,
and no key is available for decrypting it, the error reason { encr ypt ed_abstract code, Beanti | e} is
returned.

If only the module name (i.e. not the full name of the . beamfile) is given to this function, the . beamfileis found
by caling code: whi ch(Mbdul e) . If no. beamfileisfound, the error reason non_exi st i ng isreturned. If the
module is already cover compiled with conpi | e_beant 1, the. beamfile will be picked from the same location
as the first time it was compiled. If the module is already cover compiled with conpi | e/ 1, 2, there is no way to
find the correct . beamfile, so the error reason { al r eady_cover _conpi | ed, no_beam f ound, Modul e}
isreturned.

{error, BeanfFi | e} isreturned if the compiled code can not be loaded on the node.
If alist of ModFi | es isgivenasinput, alist of Resul t will bereturned. The order of the returned list is undefined.

compile beam directory() -> [Result] | {error,Reason}
compile beam directory(Dir) -> [Result] | {error,Reason}
Types:

Dir = string()

Result = See conpil e_bean 1

Reason = eacces | enoent

Compilesall modules (. beamfiles) inadirectory Di r for Cover analysisthe sameway asconpi | e_beam 1 and
returns alist with the return values.

Di r defaultsto the current working directory.

Ericsson AB. All Rights Reserved.: Tools | 31

cover

Thefunctionreturns{ er r or , eacces} if thedirectory isnot readableor { er r or , enoent } if thedirectory does
not exist.

analyse() -> {result,Ok,Fail} | {error,not main node}

analyse(Modules) -> OneResult | {result,Ok,Fail} | {error,not main node}
analyse(Analysis) -> {result,Ok,Fail} | {error,not main node}
analyse(Level) -> {result,0Ok,Fail} | {error,not main node}

analyse(Modules, Analysis) -> OneResult | {result,Ok,Fail} |
{error,not main node}

analyse(Modules, Level) -> OneResult | {result,Ok,Fail} |
{error,not_main node}

analyse(Analysis, Level) -> {result,Ok,Fail} | {error,not main node}

analyse(Modules, Analysis, Level) -> OneResult | {result,Ok,Fail} |
{error,not_main node}

Types:
Modul es = Mbdul e | [Modul €]
Modul e = atom()
Anal ysis = coverage | calls
Level = line | clause | function | nodul e
OneResult = {ok, {Modul e, Value}} | {ok,[{Item Value}]} | {error, Error}
Item= Line | Cause | Function
Line = {MN
G ause = {MF, A C
Function = {MF, A}
M=F = aton()
N=A=C=integer()
Val ue = {Cov, NotCov} | Calls
Cov = NotCov = Calls = integer()
Error = {not_cover_conpi | ed, Modul e}
Ok = [{Modul e, Value}] | [{Item Val ue}]
Fail = [Error]
Performs analysis of one or more Cover compiled modules, as specified by Anal ysi s and Level (seeabove), by
examining the contents of the internal database.
Anal ysi s defaultsto cover age and Level defaultstof uncti on.
If Modul es isan atom (one module), thereturn will beOneResul t , elsethereturnwill be{resul t, Ok, Fai | }.

If Modul es isnot given, all modulesthat have datain the cover datatable, are analysed. Note that this includes both
cover compiled modules and imported modules.

If agiven moduleisnot Cover compiled, thisisindicated by the error reason{ not _cover _conpi | ed, Modul e} .

32 | Ericsson AB. All Rights Reserved.: Tools

cover

analyse to file() -> {result,Ok,Fail} | {error,not main node}
analyse to file(Modules) -> Answer | {result,O0k,Fail} | {error,not main node}
analyse to file(Options) -> {result,Ok,Fail} | {error,not main node}

analyse to file(Modules,Options) -> Answer | {result,Ok,Fail} |
{error,not_main node}

Types:
Modul es = Mbdul e | [Modul €]
Modul e = atom()
QutFile = QutDir = string()
Opt i ons [Opti on]
Otion = htm | {outfile,QutFile} | {outdir,QutDir}
Answer = {ok,CQutFile} | {error,Error}
& = [QutFile]
Fail = [Error]
Error = {not_cover_conpil ed, Module} | {file, File, Reason} |
{no_source_code_f ound, Mbdul e}
File = string()
Reason = term()

Makes copies of the source file for the given modules, where it for each executable line is specified how many times
it has been executed.

The output file Qut Fi | e defaults to Modul e. COVER. out , or Modul e. COVER. ht ml if the option ht ml was
used.

If Modul es isanatom (onemodule), thereturn will be Answer , elsethereturnwill bealist,{r esul t, Ck, Fai | }.

If Modul es isnot given, all modulesthat have datain the cover datatable, are analysed. Note that this includes both
cover compiled modules and imported modules.

If amoduleis not Cover compiled, thisisindicated by the error reason { not _cover _conpi | ed, Modul e} .

If the source file and/or the output file cannot be opened using fi | e: open/ 2, the function returns { err or,
{file, File, Reason}} whereFi | e isthefile name and Reason isthe error reason.

If a module was cover compiled from the .beam file, i.e. using conpile _beam1l or
conpi | e_beam directory/0, 1, it isassumed that the source code can be found in the same directory as the
. beamfile in. . / sr c relativeto that directory, or using the source pathin Modul e: modul e_i nf o(conpi | e) .
When using thelatter, two paths are examined: first the one constructed by joining . . / sr ¢ and thetail of the compiled
path below atrailing sr ¢ component, then the compiled path itself. If no source code is found, thisis indicated by
the error reason { no_sour ce_code_f ound, Modul e} .

async_analyse to file(Module) ->
async_analyse to file(Module,Options) ->
async_analyse to file(Module, OutFile) ->
async_analyse to file(Module, OutFile, Options) -> pid()
Types:

Modul e = atom()

QutFile = string()

Options = [Option]

Option = htm

Ericsson AB. All Rights Reserved.: Tools | 33

cover

Error = {not_cover_conpil ed, Modul e} | {file, File, Reason} |
{no_source_code_found, Modul e} | not_nmi n_node

File = string()
Reason = term()
This function works exactly the same way as analyse to_file except that it is asynchronous instead of synchronous.

The spawned process will link with the caller when created. If an Er r or occurs while doing the cover analysis the
process will crash with the same error reason as analyse to_file would return.

modules() -> [Module] | {error,not main node}
Types:
Modul e = atom()

Returns alist with all modules that are currently Cover compiled.

imported modules() -> [Module] | {error,not main node}
Types:

Modul e = atom()
Returns alist with all modules for which there are imported data.

imported() -> [File] | {error,not main node}
Types:

File = string()
Returns alist with all imported files.

which nodes() -> [Node] | {error,not main node}
Types:
Node = atom()

Returns a list with all nodes that are part of the coverage analysis. Note that the current node is not returned. This
node is always part of the analysis.

is compiled(Module) -> {file,File} | false | {error,not main node}
Types:

Modul e = atom()

Beam = string()

Returns{fi | e, Fi | e} if themodule Modul e isCover compiled, or f al se otherwise. Fi | e isthe. er| fileused
by cover: conpi | e_nodul e/ 1, 2 or the. beamfileused by conpi | e_beant 1.

reset(Module) ->
reset() -> ok | {error,not main node}
Types:

Modul e = atom()

Resets all coverage data for a Cover compiled module Modul e in the Cover database on all nodes. If the argument
is omitted, the coverage data will be reset for all modules known by Cover.

If Modul e isnot Cover compiled, the functionreturns{ err or, {not _cover _conpi | ed, Modul e}}.

34 | Ericsson AB. All Rights Reserved.: Tools

cover

export (ExportFile)
export(ExportFile,Module) -> ok | {error,Reason}
Types:

ExportFile = string()

Modul e = atom()

Reason = {not_cover_conpil ed, Modul e} | {cant_open_fil e, ExportFil e, Reason}
| not_main_node

Exportsthe current coveragedatafor Modul e tothefileExpor t Fi | e.ltisrecommendedto nametheExport Fi | e
with the extension . cover dat a, since other filenames can not be read by the web based interface to cover.

If Modul e isnot given, datafor all Cover compiled or earlier imported modules is exported.
Thisfunction isuseful if coverage datafrom different systemsisto be merged.
Seeasocover:inport/1

import(ExportFile) -> ok | {error,Reason}
Types.
ExportFile = string()
Reason = {cant _open_file, ExportFil e, Reason} | not_nmai n_node

ImportscoveragedatafromthefileExpor t Fi | e createdwithcover : export/ 1, 2. Any analysisperformed after
thiswill include the imported data.

Note that when compiling a module all existing cover age data is removed, including imported data. If amoduleis
already compiled when data is imported, the imported data is added to the existing coverage data.

Coverage data from several export files can be imported into one system. The coverage data is then added up when
analysing.

Coverage data for amodule can not be imported from the same file twice unless the module is first reset or compiled.
The check is based on the filename, so you can easily fool the system by renaming your export file.

Seealsocover: export/1,2

stop() -> ok | {error,not main node}
Stops the Cover server and unloads all Cover compiled code.

stop(Nodes) -> ok | {error,not main node}
Types:
Nodes = [atom()]

Stops the Cover server and unloads all Cover compiled code on the given nodes. Data stored in the Cover database
on the remote nodes is fetched and stored on the main node.

flush(Nodes) -> ok | {error,not main node}
Types:
Nodes = [atom()]
Fetch data from the Cover database on the remote nodes and stored on the main node.

SEE ALSO
code(3), compile(3)

Ericsson AB. All Rights Reserved.: Tools | 35

cprof

cprof

Erlang module

Thecpr of moduleisusedto profileaprogram to find out how many times different functions are called. Breakpoints
similar to local call trace, but containing a counter, are used to minimise runtime performance impact.

Since breakpoints are used there is no need for special compilation of any module to be profiled. For now these
breakpoints can only be set on BEAM code so s cannot be call count traced.

The size of the call countersisthe host machine word size. One bit is used when pausing the counter, so the maximum
counter value for a 32-hit host is 2147483647.

Theprofiling resultisdelivered asaterm containing asorted list of entries, one per module. Each module entry contains
asorted list of functions. The sorting order in both casesis of decreasing call count.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradation in the vicinity of 10 percent.

Exports

analyse() -> {AllCallCount, ModAnalysisList}
analyse(Limit) -> {AllCallCount, ModAnalysisList}
analyse(Mod) -> ModAnalysis

analyse(Mod, Limit) -> ModAnalysis

Types.
Limt = integer()
Mod = atom()

Al Cal | Count = integer()

ModAnal ysi sLi st = [ModAnal ysi s]

ModAnal ysis = {Mdd, MbddCall Count, FuncAnal ysisLi st}
MbdCal | Count = integer()

FuncAnal ysi sList = [{{Md, Func, Arity}, FuncCall Count}]
Func = atom()

Arity = integer()

FuncCal | Count = integer()

Collects and analysesthe call counters presently in the node for either module Mod, or for all modules (except cpr of
itself), and returns:

FuncAnal ysi sLi st

A list of tuples, one for each function in amodule, in decreasing FuncCal | Count order.
MbdCal | Count

The sum of FuncCal | Count valuesfor al functions in module Mod.
Al'l Cal | Count

The sum of MbdCal | Count vauesfor all modules concerned in ModAnal ysi sLi st .
MbdAnal ysi sLi st

A list of tuples, one for each module except cpr of , in decreasing ModCal | Count order.

If call countersaretill runningwhileanal yse/ 0. . 2 isexecuting, you might get aninconsistent result. Thishappens
if the process executing anal yse/ 0. . 2 gets scheduled out so some other process can increment the counters that
are being analysed, Calling pause() before analysing takes care of the problem.

36 | Ericsson AB. All Rights Reserved.: Tools

cprof

If the Mod argument is given, the result contains a ModAnal ysi s tuple for module Mbd only, otherwise the result
contains one ModAnal ysi s tuple for al modulesreturned from code: al | _| oaded() except cpr of itself.

All functionswithaFuncCal | Count lower thanLi mi t are excluded from FuncAnal ysi sLi st . They are still
included in ModCal | Count , though. The default valuefor Li mi t is1.

pause() -> integer()

Pause call count tracing for all functionsin al modules and stop it for all functions in modules to be loaded. Thisis
thesameas(pause({' ',"' ',' _"})+stop({on_load})).

See also pause/1..3 below.

pause(FuncSpec) -> integer()
pause(Mod, Func) -> integer()
pause(Mod, Func, Arity) -> integer()

Types:
FuncSpec = Mbd | {Mod, Func, Arity}, {FS}
Mod = atom()

Func = atom()

Arity = integer()

FS = term))
Pause call counters for matching functions in matching modules. The FS argument can be used to specify the first
argumenttoer | ang: t race_patt er n/ 3. See erlang(3).
The call counters for all matching functions that has got call count breakpoints are paused at their current count.

Return the number of matching functions that can have call count breakpoints, the sameasst art/ 0. . 3 with the
same arguments would have returned.

restart() -> integer()
restart(FuncSpec) -> integer()
restart(Mod, Func) -> integer()
restart(Mod, Func, Arity) -> integer()

Types:
FuncSpec = Mbd | {Mod, Func, Arity}, {FS}
Mbd = aton()

Func = atom()
Arity = integer()
FS = ternm()

Restart call counters for the matching functions in matching modules that are call count traced. The FS argument can
be used to specify thefirst argument toer | ang: trace_pat t er n/ 3. See erlang(3).

The call counters for all matching functions that has got call count breakpoints are set to zero and running.

Return the number of matching functions that can have call count breakpoints, the sameasst art/ 0. . 3 with the
same arguments would have returned.

Ericsson AB. All Rights Reserved.: Tools | 37

cprof

start() -> integer()

Start call count tracing for all functionsin al modules, and aso for all functionsin modules to be loaded. Thisisthe
sameas(start({'_'," _',"' _'"})+start({on_l oad})).

See dso start/1..3 below.

start(FuncSpec) -> integer()
start(Mod, Func) -> integer()
start(Mod, Func, Arity) -> integer()

Types:
FuncSpec = Mbd | {Mod, Func, Arity}, {FS}
Mod = atom()

Func = atom()
Arity = integer()
FS = term()

Start call count tracing for matching functions in matching modules. The FS argument can be used to specify the first
argumenttoer | ang: trace_pattern/ 3, for exampleon_| oad. See erlang(3).

Set call count breakpoints on the matching functions that has no call count breakpoints. Call counters are set to zero
and running for all matching functions.

Return the number of matching functions that has got call count breakpoints.

stop() -> integer()

Stop call count tracing for all functionsin all modules, and also for al functions in modules to be loaded. Thisisthe
sameas(stop({'_',"'_',"'_'})+stop({on_load})).

See also stop/1..3 below.

stop(FuncSpec) -> integer()
stop(Mod, Func) -> integer()
stop(Mod, Func, Arity) -> integer()

Types:
FuncSpec = Mbd | {Mod, Func, Arity}, {FS}
Mod = atom()

Func = atom()
Arity = integer()
FS = term()

Stop call count tracing for matching functionsin matching modules. The FS argument can be used to specify the first
argumenttoer | ang: trace_pattern/ 3, for exampleon_| oad. See erlang(3).

Remove call count breakpoints from the matching functions that has call count breakpoints.

Return the number of matching functions that can have call count breakpoints, the sasme asst art/ 0. . 3 with the
same arguments would have returned.

See Also
eprof(3), fprof(3), erlang(3), User's Guide

38 | Ericsson AB. All Rights Reserved.: Tools

eprof

eprof

Erlang module

The module epr of provides a set of functions for time profiling of Erlang programs to find out how the execution
time is used. The profiling is done using the Erlang trace BIFs. Tracing of local function calls for a specified set of
processes is enabled when profiling is begun, and disabled when profiling is stopped.

When using Eprof, expect a slowdown in program execution.

Exports
start() -> {ok,Pid} | {error,Reason}
Types:

Pid = pid()

Reason = {al ready_started, Pi d}
Starts the Eprof server which holds the internal state of the collected data.

start profiling(Rootset) -> profiling | {error, Reason}
start profiling(Rootset,Pattern) -> profiling | {error, Reason}
start profiling(Rootset,Pattern,Options) -> profiling | {error, Reason}

Types:
Rootset = [atom() | pid()]
Pattern = {Modul e, Function, Arity}

Modul e = Function = atom()
Arity = integer()

Options = [set_on_spawn]
Reason = term()

Starts profiling for the processesin Root set (and any new processes spawned from them). Information about activity
in any profiled processis stored in the Eprof database.

Root set isalist of pidsand registered names.
The function returnspr of i | i ng if tracing could be enabled for all processesin Root set , or er r or otherwise.

A pattern can be selected to narrow the profiling. For instance a specific module can be selected, and only the code
executed in that module will be profiled.

Theset _on_spawn option will active call time tracing for all processes spawned by processes in the rootset. This
isthe default behaviour.

stop profiling() -> profiling stopped | profiling already stopped
Stops profiling started withst art _profiling/ 1orprofile/1.

Ericsson AB. All Rights Reserved.: Tools | 39

eprof

profile(Fun) -> profiling | {error, Reason}

profile(Fun, Options) -> profiling | {error, Reason}

profile(Rootset) -> profiling | {error, Reason}

profile(Rootset,Fun) -> {ok, Value} | {error,Reason}
profile(Rootset,Fun,Pattern) -> {ok, Value} | {error, Reason}
profile(Rootset,Module,Function,Args) -> {ok, Value} | {error, Reason}

profile(Rootset,Module,Function,Args,Pattern) -> {ok, Value} | {error,
Reason}

profile(Rootset,Module,Function,Args,Pattern,Options) -> {ok, Value} |
{error, Reason}

Types.
Rootset = [atom() | pid()]
Fun = fun() -> term() end
Pattern = {Mdul e, Function, Arity}
Modul e = Function = atom)
Args = [tern()]
Arity = integer()
Options = [set_on_spawn]
Val ue = Reason = term)
This function first spawns a process P which evaluates Fun() or appl y(Modul e, Functi on, Args) . Then, it

starts profiling for P and the processesin Root set (and any new processes spawned from them). Information about
activity in any profiled processis stored in the Eprof database.

Root set isalist of pidsand registered names.

If tracing could be enabled for P and al processes in Root set, the function returns { ok, Val ue} when
Fun() /appl y returns with the value Val ue, or {error, Reason} if Fun() /apply fails with exit reason
Reason. Otherwiseit returns{ error, Reason} immediately.

Theset _on_spawn option will active call timetracing for all processes spawned by processes in the rootset. This
isthe default behaviour.

The programmer must ensure that the function given as argument is truly synchronous and that no work continues
after the function has returned avalue.

analyze() -> ok
analyze(Type) -> ok
analyze(Type,Options) -> ok
Types.
Type = procs | total
Options = [{filter, Filter} | {sort, Sort}
Filter = [{calls, integer()} | {tine, float()}]
Sort =tine | calls | nfa
Call this function when profiling has been stopped to display the results per process, that is:

* how much time has been used by each process, and
e inwhich function calls this time has been spent.

40 | Ericsson AB. All Rights Reserved.: Tools

eprof

Call anal yze witht ot al option when profiling has been stopped to display the results per function call, that isin
which function calls the time has been spent.

Timeis shown as percentage of total time and as absolute time.

log(File) -> ok
Types:
File = atom() | string()
Thisfunction ensuresthat theresultsdisplayed by anal yze/ 0, 1, 2 areprinted both to thefileFi | e and the screen.

stop() -> stopped
Stops the Eprof server.

Ericsson AB. All Rights Reserved.: Tools | 41

erlang.el

erlang.el

Erlang module

Possibly the most important feature of an editor designed for programmers is the ability to indent a line of code in
accordancewith the structure of the programming language. The Erlang mode does, of course, providethisfeature. The
layout used is based on the common use of the language. The mode also providesthings as syntax highlighting, electric
commands, module name verification, comment support including paragraph filling, skeletons, tags support etc.

In the following descriptions the use of the word Point means: "Point can be seen as the position of the cursor. More
precisely, the point is the position between two characters while the cursor is drawn over the character following the
point”.

Indent
The following command are directly available for indentation.

e« TAB(erl ang-i ndent - conmand) - Indents the current line of code.

e MG\ (i ndent -region) - Indentsal linesin the region.

e M1 (i ndent-for-comrent) - Insert acomment character to the right of the code on the line (if any).

Lines containing comment are indented differently depending on the number of %-characters used:

* Lineswith one %-character isindented to the right of the code. The column is specified by the variable
conmment - col umm, by default column 48 is used.

» Lineswith two %-characters will be indented to the same depth as code would have been in the same situation.

» Lineswith three of more %-characters are indented to the left margin.

e« GCoc Cq(erlang-indent-function)- Indentsthe current Erlang function.

e« Mx erlang-indent-clause RET
-Indent the current Erlang clause.

e Mx erlang-indent-current-buffer RET - Indenttheentirebuffer.

Edit - Fill Comment

When editing normal text in text mode you can let Emacs reformat the text by thefi | | - par agr aph command.
This command will not work for comments since it will treat the comment characters as words.

The Erlang editing mode provides a command that knows about the Erlang comment structure and can be used to fill
text paragraphs in comments. Ex:

% This is just a very simple test to show
% how the Erlang fill
% paragraph command works.

o o of

Clearly, the text is badly formatted. Instead of formatting this paragraph line by line, let'stry erl ang-fill -
par agr aph by pressing M g. Theresult is:

()
“©
()

“©

% This is just a very simple test to show how the Erlang fill
paragraph command works.

o
"6

42 | Ericsson AB. All Rights Reserved.: Tools

erlang.el

Edit - Comment/Uncomment Region

C-c C- c will put comment characters at the beginning of al linesin a marked region. If you want to have two
comment charactersinstead of oneyoucandoC-u 2 CGc C-c¢

C- ¢ C- u will undo acomment-region command.

Edit - Moving the marker

C-a Ma (erl ang-begi nni ng- of -functi on) - Move the point to the beginning of the current or
preceding Erlang function. With an numeric argument (ex C-u 2 C-a M a) the function skips backwards
over this many Erlang functions. Should the argument be negative the point is moved to the beginning of a
function below the current function.

M C-a (erl ang-begi nni ng- of - cl ause) - Asabove but move point to the beginning of the current or
preceding Erlang clause.

C-a Me (erlang-end-of-function)-Movetotheend of the current or following Erlang function.
With an numeric argument (ex C-u 2 C-a M e) the function skips backwards over this many Erlang
functions. Should the argument be negative the point is moved to the end of afunction below the current
function.

M C-e (erl ang- end- of - cl ause) - As above but move point to the end of the current or following
Erlang clause.

Edit - Marking

C-c M h(erl ang- mar k- f uncti on) - Put the region around the current Erlang function. The point is
placed in the beginning and the mark at the end of the function.

M C h (erl ang- mar k- cl ause) Put the region around the current Erlang clause. The point is placed in
the beginning and the mark at the end of the function.

Edit - Function Header Commands

C-c Cj (erl ang- gener at e- new cl ause) - Create anew clause in the current Erlang function. The
point is placed between the parentheses of the argument list.

C-¢c Cy (erl ang-cl one- ar gurrent s) - Copy the function arguments of the preceding Erlang clause.
This command is useful when defining a new clause with amost the same argument as the preceding.

Edit - Arrows

C-c Caf(erlang-align-arrows) - aignsarrows after clausesinside aregion.

Example:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H);

sum([], Sum) -> Sum.

becomes:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

Ericsson AB. All Rights Reserved.: Tools | 43

erlang.el

Syntax highlighting
The syntax highlighting can be activated from the Erlang menu. There are four different alternatives:

Off: Normal black and white display.

Leve 1: Function headers, reserved words, comments, strings, quoted atoms, and character constants will be
colored.

Level 2: The above, attributes, Erlang bif:s, guards, and words in comments enclosed in single quotes will be
colored.

Level 3: The above, variables, records, and macros will be colored. (Thislevel is aso known as the Christmas
treelevel.)

Tags

For the tag commands to work it requires that you have generated a tag file. See Erlang mode users guide

M . (find-tag) - Find afunction definition. The default value is the function name under the point.

Find Tag (er | ang- f i nd- t ag) - Like the Elisp-function “find-tag'. Capable of retrieving Erlang modules.
Tags can be given on the forms “tag', ‘'module:', "'module:tag'.

M + (er | ang- f i nd- next - t ag) - Find the next occurrence of tag.

M TAB (er | ang- conpl et e-t ag) - Perform completion on the tag entered in atag search. Compl etes to the
set of names listed in the current tagstable.

Tags aprops (t ags- apr opos) - Display list of al tagsin tags table REGEXP matches.

C-x t s (tags-search) - Searchthrough all fileslisted in tags table for match for REGEXP. Stops when a
match is found.

Skeletons

A skeletonisapiece of pre-written codethat can beinsertedinto the buffer. Erlang mode comeswith aset of predefined
skeletons. The skeletons can be accessed either from the Erlang menu of from commandsnamedt enpo-t enpl at e-
er | ang- *, asthe skeletons is defined using the standard Emacs package "tempo". Here follows a brief description
of the available skeletons:

Simple skeletons: If, Case, Receive, Receive After, Receive Loop - Basic code constructs.

Header elements: Module, Author - These commandsinsert lines on the form - modul e(xxx) . and-
aut hor (' my@one') . . They can be used directly, but are also used as part of the full headers described
below.

Full Headers: Small (minimum reguirement), Medium (with fields for basic information about the module), and
Large Header (medium header with some extralayout structure).

Small Server - skeleton for asimple server not using OTP.

Application - skeletons for the OTP application behavior

Supervisor - skeleton for the OTP supervisor behavior

Supervisor Bridge - skeleton for the OTP supervisor bridge behavior

gen_server - skeleton for the OTP gen_server behavior

gen_event - skeleton for the OTP gen_event behavior

gen_fsm - skeleton for the OTP gen_fsm behavior

gen_statem (StateName/3) - skeleton for the OTP gen_statem behavior using state name functions
gen_statem (handle_event/4) - skeleton for the OTP gen_statem behavior using one state function
Library module - skeleton for amodule that does not implement a process.

Corba callback - skeleton for a Corba callback module.

44 | Ericsson AB. All Rights Reserved.: Tools

erlang.el

» Erlang test suite - skeleton for a callback module for the erlang test server.

Shell

« Newshél (erl ang- shel |) - Starts anew Erlang shell.

e GCoc Gz, (erlang-shell-display)-Displaysan Erlang shell, or starts anew oneif thereis no shell
started.

Compile

e« GCoc CKk, (erlang-conpi |l e) - Compilesthe Erlang module in the current buffer. You can also use C- u
C- ¢ G- k to debug compile the module with the debug optionsdebug_i nf o andexport _al | .

e GCoc CI, (erlang-compi |l e-di spl ay) - Display compilation output.

e GCu Cx Start parsing the compiler output from the beginning. This command will place the point on the
line where the first error was found.

e GC-x (erlang-next-error)-Movethe point on to the next error. The buffer displaying the compilation
errorswill be updated so that the current error will be visible.

Man

On unix you can view the manual pages in emacs. In order to find the manual pages, the variable “erlang-root-dir
should be bound to the name of the directory containing the Erlang installation. The name should not include the final
slash. Practically, you should add aline on the following form to your ~/.emacs,

(setq erlang-root-dir "/the/erlang/root/dir/goes/here")

Starting IMenu

e Mx inmenu-add-to-nmenubar RET - Thiscommand will create the IMenu menu containing all the
functionsin the current buffer.The command will ask you for a suitable name for the menu. Not supported by
Xemacs.

Version

e Mx erlang-version RET - Thiscommand displays the version number of the Erlang editing mode.
Remember to always supply the version number when asking questions about the Erlang mode.

Ericsson AB. All Rights Reserved.: Tools | 45

fprof

fprof

Erlang module

This module is used to profile aprogram to find out how the execution time is used. Trace to file is used to minimize
runtime performance impact.

Thef pr of module usestracing to collect profiling data, hence thereisno need for special compilation of any module
to be profiled. When it starts tracing, f pr of will erase all previous tracing in the node and set the necessary trace
flags on the profiling target processes aswell aslocal call trace on all functionsin all loaded modules and all modules
to beloaded. f pr of erasesall tracing in the node when it stops tracing.

f pr of presents both own time i.e how much time afunction has used for its own execution, and accumulated time
i.eincluding called functions. All presented times are collected using trace timestamps. f pr of triesto collect cpu
time timestamps, if the host machine OS supports it. Therefore the times may be wallclock times and OS scheduling
will randomly strike all called functionsin a presumably fair way.

If, however, the profiling time is short, and the host machine OS does not support high resolution cpu time
measurements, some few OS schedulings may show up as ridiculously long execution times for functions doing
practically nothing. An example of a function more or less just composing a tuple in about 100 times the normal
execution time has been seen, and when the tracing was repeated, the execution time became normal.

Profiling is essentially donein 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph. The trace contains entries for function calls, returns to
function, process scheduling, other process related (spawn, etc) events, and garbage collection. All trace entries
are timestamped.

2
Profiling; the tracefile is read, the execution call stack is simulated, and raw profile datais calculated from the
simulated call stack and the trace timestamps. The profile datais stored in the f pr of server state. During this
step the trace data may be dumped in text format to file or console.

3

Analysing; the raw profile datais sorted, filtered and dumped in text format either to file or console. The text
format intended to be both readable for a human reader, as well as parsable with the standard erlang parsing
tools.

Since f pr of uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especially for programsthat use the filesystem heavily by themselves. Where you place the trace fileis also important,
e.g on Solaris/ t np is usually a good choice since it is essentially a RAM disk, while any NFS (network) mounted
disk isabad idea

f pr of can also skip the file step and trace to atracer process that does the profiling in runtime.

Exports

start() -> {ok, Pid} | {error, {already started, Pid}}
Types:

Pid = pid()
Startsthe f pr of server.

Note that it seldom needs to be started explicitly since it is automatically started by the functions that need a running
server.

46 | Ericsson AB. All Rights Reserved.: Tools

fprof

stop() -> ok

Sameasst op(normal).

stop(Reason) -> ok
Types:

Reason = term()
Stopsthef pr of server.

The supplied Reason becomes the exit reason for the server process. Default Any Reason other than ki | | sends
arequest to the server and waits for it to clean up, reply and exit. If Reason iski | | , the server is bluntly killed.

If thef pr of server isnot running, this function returns immediately with the same return value.

Note:
When thef pr of server is stopped the collected raw profile dataislost.

apply(Func, Args) -> term()
Types:
Func function() | {Mdule, Function}
Args = [term()]
Modul e = atom()
Function = atom()

Sameasappl y(Func, Args, []).

apply(Module, Function, Args) -> term()
Types:

Args = [tern()]

Modul e = atom()

Function = atom()

Sameasappl y({ Mbdul e, Function}, Args, []).

apply(Func, Args, OptionList) -> term()

Types:
Func = function() | {Mdule, Function}
Args = [term()]

OptionList = [Option]

Modul e = atom()

Function = atom()

Option = continue | start | {procs, PidList} | TraceStartOption
Cdlserl ang: appl y(Func, Args) surroundedbytrace([start, ...]) andtrace(stop).

Some effort is made to keep the trace clean from unnecessary trace messages, tracing is started and stopped from a
spawned process while the er | ang: appl y/ 2 call is made in the current process, only surrounded by r ecei ve
and send statements towards the trace starting process. The trace starting process exits when not needed any more.

Ericsson AB. All Rights Reserved.: Tools | 47

fprof

TheTraceSt art Opti on isany option allowed fortrace/ 1. Theoptions[start, {procs, [self() |
PidList]} | OptlList] aregiventotrace/ 1, whereOpt Li st isOpti onLi st withconti nue,start
and{ procs, _} optionsremoved.

Thecont i nue option inhibitsthe call tot r ace(st op) and leavesit up to the caller to stop tracing at a suitable
time.

apply(Module, Function, Args, OptionList) -> term()
Types:

Modul e = atonm()

Function = atom()

Args = [term()]
Sameasappl y({ Modul e, Function}, Args, OptionList).
Opt i onLi st isanoption list allowed for appl y/ 3.

trace(start, Filename) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types.
Reason = term()

Sameastrace([start, {file, Filenane}]).

trace(verbose, Filename) -> ok | {error, Reason} | {'EXIT', ServerPid,
Reason}

Types:
Reason = term()
Sameastrace([start, verbose, {file, Filenane}]).

trace(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT', ServerPid,
Reason}

Types:
Opt i onNanme = atom()
Optionvalue = term)
Reason = term()

Sameastrace([{Opti onNanme, OptionVal ue}]).

trace(verbose) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Reason = term()
Sameastrace([start, verbose]).

trace(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Opti onNanme = atom()

Reason = term()

Sameast race([Opti onNane]).

48 | Ericsson AB. All Rights Reserved.: Tools

fprof

trace({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}

Types.
Opti onNane = atom()
OptionValue = term))
Reason = term()

Sameastrace([{Opti onNane, OptionVal ue}]).

trace([Option]) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:
Option = start | stop | {procs, PidSpec} | {procs, [PidSpec]} | verbose
{verbose, bool ()} | file | {file, Filename} | {tracer, Tracer}

Pi dSpec = pid() | aton()
Tracer = pid() | port()
Reason = term()

Starts or stopstracing.

Pi dSpec and Tracer areusedincalstoerl ang: trace(Pi dSpec, true, [{tracer, Tracer} |
Fl ags]),and Fi | enane isused to call dbg: trace_port(file, Fil enane). Please seethe appropriate
documentation.

Option description:

st op
Stopsarunning f pr of trace and clearsall tracing from the node. Either option st op or st art must be
specified, but not both.
start
Clears al tracing from the node and startsanew f pr of trace. Either option st art or st op must be
specified, but not both.
ver bose|{verbose, bool ()}
Theoptionsver bose or{ ver bose, true} addssometraceflagsthat f pr of does not need, but that may
be interesting for general debugging purposes. This option is only allowed with the st ar t option.
cpu_tine|{cpu_tine, bool ()}
Theoptionscpu_tinmeor{cpu_tine, true>makesthetimestampsin thetracebein CPU timeinstead
of wallclock time which isthe default. Thisoptionis only allowed with the st ar t option.
{procs, PidSpec}|{procs, [PidSpec]}
Specifies which processes that shall be traced. If this option is not given, the calling processis traced. All
processes spawned by the traced processes are also traced. This option is only allowed with the st ar t option.
file|l{file, Filenane}
Specifies the filename of the trace. If the option f i | e isgiven, or none of these options are given, thefile
"fprof.trace" isused. Thisoptionisonly allowed withthest art option, but not withthe{t racer,
Tracer} option.
{tracer, Tracer}
Specifies that trace to process or port shall be done instead of traceto file. Thisoption is only allowed with the
start option, but not withthe{fil e, Fil ename} option.

profile() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types.

Reason = term)
Sameasprofile([]).

Ericsson AB. All Rights Reserved.: Tools | 49

fprof

profile(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}

Types.
Opti onNane = atom()
OptionValue = term))
Reason = term()

Sameasprofil e([{Opti onNane, OptionVal ue}]).

profile(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types.

Opti onNane = atom()

Reason = term()

Sameasprofil e([Opti onNane]).

profile({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}

Types:
Opt i onNanme = atom()
Optionvalue = term)
Reason = term()

Sameasprofil e([{Opti onNane, OptionVal ue}]).

profile([Option]) -> ok | {ok, Tracer} | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:
Option = file | {file, Filenane} | dunp | {dunp, Dunp} | append | start
st op
Dump = pid() | Dunpfile | []
Tracer = pid()
Reason = term()
Compiles atrace into raw profile data held by the f pr of server.

Dunpfile is used to cal file:open/2, and Fil enane is used to cal dbg:trace_port(file,
Fi | enane) . Please see the appropriate documentation.

Option description:

filel{file, Filenane}
Readsthefile Fi | ename and creates raw profile datathat is stored in RAM by the f pr of server. If the
optionfi | e isgiven, or none of these options are given, thefile" f pr of . t race" isread. The call will
return when the whole trace has been read with the return value ok if successful. This option is not allowed
withthest art or st op options.

dunp|{dunp, Dunp}
Specifies the destination for the trace text dump. If this option is not given, no dump is generated, if itisdunp
the destination will be the caller's group leader, otherwise the destination Dunp is either the pid of an I/O
device or afilename. And, findly, if thefilenameis[] -"f pr of . dunp” isused instead. This option is not
allowed with the st op option.

50 | Ericsson AB. All Rights Reserved.: Tools

fprof

append
Causes the trace text dump to be appended to the destination file. This option is only alowed with the { dunp,
Dunpfi | e} option.

start
Starts atracer process that profiles trace datain runtime. The call will return immediately with the return value
{ok, Tracer} if successful. Thisoptionisnot allowed withthest op,fileor{file, Filenane}
options.

stop
Stops the tracer process that profiles trace datain runtime. The return value will be value ok if successful. This
optionisnot allowed withthest art ,fileor{fil e, Filenane} options.

analyse() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Reason = term()
Sameasanal yse([]).

analyse(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}

Types:
Opt i onNanme = atom()
OptionvValue = tern()
Reason = term()

Sameasanal yse([{Opti onNane, OptionVal ue}]).

analyse(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Opti onNanme = atom()

Reason = term()

Sameasanal yse([Opti onNane]) .

analyse({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}

Types:
OptionNane = atom()
OptionValue = tern()
Reason = term()

Sameasanal yse([{Opti onNane, OptionVal ue}]).

analyse([Option]) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:
Option = dest | {dest, Dest} | append | {cols, Cols} | callers | {callers,

bool ()} | no_callers | {sort, SortSpec} | totals | {totals, bool ()}
details | {details, bool()} | no_details

Dest = pid() | Destfile
Cols = integer() >= 80

Ericsson AB. All Rights Reserved.: Tools | 51

fprof

Sort Spec = acc | own
Reason = term()

Analyses raw profile data in the f pr of server. If called while there is no raw profile data available, { error,
no_profil e} isreturned.

Destfileisusedtocal fil e: open/ 2. Please see the appropriate documentation.
Option description:

dest |{dest, Dest}
Specifies the destination for the analysis. If thisoptionis not given or it isdest , the destination will be the
caller's group leader, otherwise the destination Dest is either the pi d() of an /O device or afilename. And,
finaly, if thefilenameis[] -"f prof . anal ysi s" isused instead.

append
Causes the analysis to be appended to the destination file. This option is only alowed with the { dest ,
Destfil e} option.

{col s, Col s}
Specifies the number of columnsin the analysis text. If this option is not given the number of columnsis set to
80.

callers|{callers, true}
Prints callers and called information in the analysis. This is the default.

{callers, false}|no_callers
Suppresses the printing of callers and called information in the analysis.

{sort, Sort Spec}
Specifiesif the analysis should be sorted according to the ACC column, which is the default, or the OWN
column. See Analysis Format below.

total s|{totals, true}
Includes a section containing call statistics for all calls regardless of process, in the analysis.

{totals, false}
Supresses the totals section in the analysis, which is the default.

detail s|{details, true}
Prints call statistics for each processin the analysis. Thisis the default.

{details, false}|no_details
Suppresses the call statistics for each process from the analysis.

Analysis format
This section describes the output format of the analyse command. See analyse/0.

The format is parsable with the standard Erlang parsingtoolser | _scan ander| _parse,file:consult/1or
i 0: read/ 2. The parseformat is not explained here - it should be easy for the interested to try it out. Note that some
flagsto anal yse/ 1 will affect the format.

Thefollowing example wasrun on OTP/R8 on Solaris 8, all OTPinternalsin this example are very version dependent.

Asan example, we will use the following function, that you may recognise as a dightly modified benchmark function
from the manpage file(3):

-module(foo).
-export([create file slow/2]).

create file slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} =
file:open(Name, [raw, write, delayed write, binaryl]),
if N > 256 ->
ok = file:write(FD,

52 | Ericsson AB. All Rights Reserved.: Tools

fprof

lists:map(fun (X) -> <<X:32/unsigned>> end,
lists:seq(0, 255))),

ok = create file slow(FD, 256, N)
true ->
ok = create file slow(FD, 0, N)

end,
ok = file:close(FD).

create file slow(FD, M, M) ->
ok;

create file slow(FD, M, N) ->
ok = file:write(FD, <<M:32/unsigned>>),
create file slow(FD, M+1, N).

Let us have alook at the printout after running:

1> fprof:apply(foo, create file slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().

The printout starts with:

%% Analysis results:
{ analysis options,
[{callers, true},

{sort, acc},
{totals, false},
{details, true}l}.

% CNT ACC OWN
[{ totals, 9627, 1691.119, 1659.074}]. %%%

The CNT column shows the total number of function calls that was found in the trace. In the ACC column isthe total
time of the trace from first timestamp to last. And in the OWN column is the sum of the execution time in functions
found in the trace, not including called functions. In this case it is very close to the ACC time since the emulator had
practically nothing else to do than to execute our test program.

All time valuesin the printout are in milliseconds.
The printout continues:

% CNT ACC OWN
[{ "<0.28.0>", 9627,undefined, 1659.074}]. %%

Thisisthe printout header of one process. The printout contains only thisone processsincewedidf pr of : appl y/ 3
which traces only the current process. Therefore the CNT and OWN columns perfectly matches the totals above. The
ACC column is undefined since summing the ACC times of all calls in the process makes no sense - you would get
something like the ACC value from totals above multiplied by the average depth of the call stack, or something.

All paragraphs up to the next process header only concerns function calls within this process.
Now we come to something more interesting:

{[{undefined, 0, 1691.076, 0.030}1],

Ericsson AB. All Rights Reserved.: Tools | 53

fprof

{ {fprof,apply start stop,4}, 0, 1691.076, 0.030}, %
[{{foo,create file slow,2}, 1, 1691.046, 0.103},
{suspend, 1, 0.000, 0.000}1}.

{[{{fprof,apply start stop,4}, 1, 1691.046, 0.103}1,

{ {foo,create file slow,2}, 1, 1691.046, 0.103}, %
[{{file,close, 1}, 1, 1398.873, 0.019},
{{foo,create file slow,3}, 1, 249.678, 0.029},
{{file,open,2}, 1, 20.778, 0.055},
{{lists,map,2}, 1, 16.590, 0.043},
{{lists,seq, 2}, 1, 4.708, 0.017},
{{file,write,2}, 1, 0.316, 0.021}1}.

The printout consists of one paragraph per called function. The function marked with '%' is the one the paragraph
concerns - f oo: create_fil e_sl ow 2. Above the marked function are the calling functions - those that has
called the marked, and below are those called by the marked function.

The paragraphs are per default sorted in decreasing order of the ACC column for the marked function. The calling list
and called list within one paragraph are also per default sorted in decreasing order of their ACC column.

The columns are: CNT - the number of times the function has been called, ACC - the time spent in the function
including called functions, and OWN - the time spent in the function not including called functions.

Therowsfor the calling functions contain statistics for the mar ked function with the constraint that only the occasions
when acall was made from the row's function to the mar ked function are accounted for.

The row for the marked function simply contains the sum of all calling rows.

Therows for the called functions contains statistics for the row's function with the constraint that only the occasions
when a call was made from the marked to the row's function are accounted for.

So, weseethat f oo: create_fil e_sl ow 2 used very little time for its own execution. It spent most of itstime
infile:closel/l. Thefunctionfoo: create file_sl ow 3 that writes 3/4 of the file contents is the second
biggest time thief.

Weasoseethatthecal tofi |l e: writ e/ 2 that writes 1/4 of the file contents takes very little time in itself. What
takestimeisto buildthedata(l i st s: seq/2andl i sts: map/ 2).

The function 'undefined’ that has called f pr of : appl y_start st op/ 4 isan unknown function because that call
wasnot recorded inthetrace. It wasonly recorded that the execution returned fromf pr of : appl y_start _stop/ 4
to some other function above in the call stack, or that the process exited from there.

Let us continue down the printout to find:

{[{{foo,create file slow,?2}, 1, 249.678, 0.029},
{{foo,create file slow,3}, 768, 0.000, 23.294}1,

{ {foo,create file slow,3}, 769, 249.678, 23.323}, %
[{{file,write,2}, 768, 220.314, 14.539},
{suspend, 57, 6.041, 0.000},
{{foo,create file slow,3}, 768, 0.000, 23.294}1}.

If you compare with the code you will see there also that f oo: create fil e sl ow 3 was called only
from foo: create file_ sl ow 2 and itself, and called only fil e: wite/ 2, note the number of calls to
file:witel?2. Buthereweseethat suspend wascalled afew times. Thisisapseudo function that indicates that
the process was suspended while executing in f oo: create_fil e_sl ow 3, and sincethereisnor ecei ve or
erl ang: yi el d/ 0 inthe code, it must be Erlang scheduling suspensions, or the trace file driver compensating for
large file write operations (these are regarded as a schedule out followed by a schedule in to the same process).

Let usfind thesuspend entry:

54 | Ericsson AB. All Rights Reserved.: Tools

fprof

{[{{file,write,?2}, 53, 6.281, 0.000},
{{foo,create file slow,3}, 57, 6.041, 0.000},
{{prim_file,drv_command,4}, 50, 4.582, 0.000},
{{prim_file,drv_get response,1}, 34, 2.986, 0.000},
{{lists,map,2}, 10, 2.104, 0.000},
{{prim_file,write,2}, 17, 1.852, 0.000},
{{erlang,port command,2}, 15, 1.713, 0.000},
{{prim_file,drv_command,2}, 22, 1.482, 0.000},
{{prim_file, translate response,?2}, 11, 1.441, 0.000},
{{prim_file, '-drv_command/2-fun-0-',1}, 15, 1.340, 0.000},
{{lists,seq,4}, 3, 0.880, 0.000},
{{foo, '-create file slow/2-fun-0-',1}, 5, 0.523, 0.000},
{{erlang, bump reductions,1}, 4, 0.503, 0.000},
{{prim_file,open_int setopts,3}, i, 0.165, 0.000},
{{prim_file,i32,4}, 1, 0.109, 0.000},
{{fprof,apply start stop,4}, 1, 0.000, 0.000}1,

{ suspend, 299, 32.002, 0.000}, %

[1}.

We find no particulary long suspend times, so no function seems to have waited in a receive statement. Actually,
primfile:drv_comrand/ 4 containsareceive statement, but in thistest program, the messageliesin the process
receive buffer when the receive statement is entered. We also see that the total suspend time for the test run is small.

The suspend pseudo function has got an OWN time of zero. Thisis to prevent the process total OWN time from
including time in suspension. Whether suspend timeisreally ACC or OWN time is more of a philosophical question.

Now we look at another interesting pseudo function, gar bage_col | ect:

{[{{prim_file,drv_command,4}, 25, 0.873, 0.873},
{{prim_file,write,2}, 16, 0.692, 0.692},
{{lists,map,2}, 2, 0.195, 0.195}1,

{ garbage collect, 43, 1.760, 1.760}, %

[1}.

Here we see that no function distinguishesitself considerably, which is very normal.

The gar bage_col | ect pseudo function has not got an OWN time of zero like suspend, instead it is equal to
the ACC time.

Garbage collect often occurs while aprocessis suspended, but f pr of hidesthisfact by pretending that the suspended
function wasfirst unsuspended and then garbage collected. Otherwise the printout would show gar bage_col | ect
being called from suspend but not which function that might have caused the garbage collection.

Let us now get back to the test code:

{[{{foo,create file slow,3}, 768, 220.314, 14.539},
{{foo,create file slow,2}, 1, 0.316, 0.021}1,
{ {file,write,?2}, 769, 220.630, 14.560}, %
[{{prim_file,write,?2}, 769, 199.789, 22.573},
{suspend, 53, 6.281, 0.000}1}.

Not unexpectedly, we see that file:wite/2 was cdled from foo:create file slow 3 and
foo:create file_sl ow 2. Thenumber of calsin each case aswell as the used time are also just confirms the
previous results.

Weseethatfile:wite/2onlycdlsprimfile:wite/2,butletusrefrain from digging into the internals
of the kernel application.

Ericsson AB. All Rights Reserved.: Tools | 55

fprof

But, if we nevertheless do dig down we find the call to the linked in driver that does the file operations towards the
host operating system:

{[{{prim _file,drv_command,4}, 772, 1458.356, 1456.643}1],
{ {erlang,port command,2}, 772, 1458.356, 1456.643}, %
[{suspend, 15, 1.713, 0.000}1}.

Thisis 86 % of the total run time, and as we saw before it is the close operation the absolutely biggest contributor.
We find a comparison ratio alittle bit up in the call stack:

{[{{prim_file,close,1}, 1, 1398.748, 0.024},
{{prim_file,write,2}, 769, 174.672, 12.810},
{{prim_file,open int,4}, 1, 19.755, 0.017},
{{prim_file,open_int_ setopts,3}, i, 0.147, 0.016}1,

{ {prim_file,drv_command,2}, 772, 1593.322, 12.867}, %
[{{prim_file,drv_command,4}, 772, 1578.973, 27.265},
{suspend, 22, 1.482, 0.000}1}.

Thetimefor file operationsin the linked in driver distributesitself as 1 % for open, 11 % for write and 87 % for close.
All datais probably buffered in the operating system until the close.

The unsleeping reader may notice that the ACC times for primfile:drv_comand/2 and
primfile:drv_conmand/ 4 isnot equal between the paragraphs above, even though it is easy to believe that
primfile:drv_conmmand/ 2 isjust apassthrough function.

The missing time can be found inthe paragraphforpri m fi | e: dr v_command/ 4 whereit isevident that not only
primfile:drv_conmmand/ 2 iscalled but alsoafun:

{[{{prim_file,drv_command,2}, 772, 1578.973, 27.265}1,

{ {prim_file,drv_command,4}, 772, 1578.973, 27.265}, %
[{{erlang,port command, 2}, 772, 1458.356, 1456.643},
{{prim_file,'-drv_command/2-fun-0-',1}, 772, 87.897, 12.736},
{suspend, 50, 4.582, 0.000},
{garbage collect, 25, 0.873, 0.873}1}.

And some more missing time can be explained by the fact that primfile: open_int/4 both cals
primfile:drv_comrand/ 2 directly as well as through pri m fil e: open_i nt_setopts/ 3, which
complicates the picture.

{[{{prim_file,open,2}, 1, 20.309, 0.029},
{{prim file,open int,4}, 1, 0.000, 0.057}1,

{ {prim_file,open int,4}, 2, 20.309, 0.086}, %
[{{prim file,drv_command,2}, 1, 19.755, 0.017},
{{prim file,open int setopts,3}, i, 0.360, 0.032},
{{prim_file,drv_open,2}, 1, 0.071, 0.030},
{{erlang,list to binary,1}, 1, 0.020, 0.020},
{{prim_file,i32,1}, 1, 0.017, 0.017},
{{prim file,open int,4}, 1, 0.000, 0.057}1}.

{[{{prim_file,open int,4}, 1, 0.360, 0.032},
{{prim file,open int setopts,3}, i, 0.000, 0.016}1,

{ {prim file,open int setopts,3}, 2, 0.360, 0.048}, %

56 | Ericsson AB. All Rights Reserved.: Tools

fprof

[{suspend, 1, 0.165, 0.000},
{{prim_file,drv_command, 2}, 1, 0.147, 0.016},
{{prim_file,open_int setopts,3}, 1, 0.000, 0.016}1}.

Notes

The actual supervision of execution timesisin itself a CPU intensive activity. A message is written on the trace file
for every function call that is made by the profiled code.

The ACC time calculation is sometimes difficult to make correct, sinceit isdifficult to define. This happens especially
when a function occurs in several instances in the call stack, for example by calling itself perhaps through other
functions and perhaps even non-tail recursively.

To produce sensibleresults, f pr of triesnot to charge any function morethan oncefor ACC time. Theinstance highest
up (with longest duration) in the call stack is chosen.

Sometimes a function may unexpectedly waste a lot (some 10 ms or more depending on host machine OS) of OWN
(and ACC) time, even functions that does practically nothing at all. The problem may be that the OS has chosen to
schedule out the Erlang runtime system process for awhile, and if the OS does not support high resolution cpu time
measurementsf pr of will usewallclock timefor itscalculations, and it will appear asfunctionsrandomly burn virtual
machinetime.

See Also
dbg(3), eprof(3), erlang(3), io(3), Tools User's Guide

Ericsson AB. All Rights Reserved.: Tools | 57

instrument

instrument

Erlang module

Themodulei nst r unent contains support for studying the resource usage in an Erlang runtime system. Currently,
only the allocation of memory can be studied.

Note:

Note that this whole module is experimental, and the representations used as well as the functionality is likely
to change in the future.

Thei nst r ument module interface was sightly changed in Erlang/OTP R9C.

To start an Erlang runtime system with instrumentation, use the +M * set of command-line arguments to the er |
command (see the erts_alloc(3) and erl(1) man pages).

The basic object of study in the case of memory alocation is a memory alocation map. A memory allocation map
contains alist of descriptors for each allocated memory block. Currently, a descriptor is a4-tuple

{TypeNo, Address, Size, PidDesc}

where TypeNo is the memory block type number, Addr ess isits place in memory, and Si ze isits size, in bytes.
Pi dDesc iseither atuple{ X, Y, Z} identifying the process which was executing when the block was allocated, or
undef i ned if no process was executing. The pid tuple { X, Y, Z} can be transformed into a real pid by usage of
thec: pi d/ 3 function.

Various details about memory allocation:

Memory blocks are allocated both on the heap segment and on other memory segments. This can cause the
instrumentation functionality to report very large holes. Currently the instrumentation functionality doesn't provide
any support for distinguishing between holes between memory segments, and holes between allocated blocks inside
memory segments. The current size of the process cannot be obtained from within Erlang, but can be seen with one
of the system statistics tools, e.g., ps or t op. The Solaris utility pmap can be useful. It reports currently mapped
memory segments.

Overhead for instrumentation: When the emulator has been started with the "+ Mim true" flag, each block is preceded
by a24 byteslarge header on a32-bit machine and a 48 byteslarge header on a 64-bit machine. When the emulator has
been started with the "+ Mis true" flag, each block is preceded by an 8 bytes large header. These are the header sizes
used by the Erlang 5.3/OTP R9C emulator. Other versions of the emulator may use other header sizes. The function
block_header_size/1 can be used for retrieving the header size used for a specific memory allocation map. The time
overhead for managing the instrumentation datais small.

Sizes presented by the instrumentation functionality are (by the emulator) requested sizes, i.e. neither instrumentation
headers nor headers used by allocators are included.

Exports
allocator descr(MemoryData, TypeNo) -> AllocDescr | invalid type | "unknown"

Types:
MemoryData = {term(), AlloclList}

58 | Ericsson AB. All Rights Reserved.: Tools

instrument

Al'l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
Pi dDesc = {int(), int(), int()} | undefined
TypeNo = int()
Al l ocDescr = atom() | string()
Returns the allocator description of the allocator that manages memory blocks of type number TypeNo used in

Menor yDat a. Valid TypeNosarein the rangereturned by type no_range/1 on this specific memory allocation map.
If TypeNo isaninvalid integer, i nval i d_t ype isreturned.

block header size(MemoryData) -> int()
Types.
MenmoryData = {term(), AlloclList}
Al |l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
Pi dDesc = {int(), int(), int()} | undefined

Returns the memory block header size used by the emulator that generated the memory allocation map. The block
header size may differ between different emulators.

class _descr(MemoryData, TypeNo) -> ClassDescr | invalid type | "unknown"
Types:
MenoryData = {tern(), AllocList}
Al'l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
TypeNo = int()
Cl assDescr = aton() | string()
Returns the class description of the class that the type number TypeNo used in Menor yDat a belongs to. Valid

TypeNos are in the range returned by type no_range/1 on this specific memory allocation map. If TypeNo is an
invalid integer, i nval i d_t ype isreturned.

descr(MemoryData) -> DescrMemoryData

Types:
MenmoryData = {term(), AlloclList}
Al'l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
Descr MenoryData = {tern(), DescrAllocList}
Descr Al l ocLi st = [DescrDesc]
DescrDesc = {TypeDescr, int(), int(), DescrPidDesc}
TypeDescr = atom() | string()
Descr Pi dDesc = pid() | undefined

Returns a memory alocation map where the type numbers (first element of Desc) have been replaced by type
descriptions, and pid tuples (fourth element of Desc) have been replaced by rea pids.

Ericsson AB. All Rights Reserved.: Tools | 59

instrument

holes (MemoryData) -> ok
Types.
MemoryData = {term(), AlloclList}
Al |l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
Pi dDesc = {int(), int(), int()} | undefined

Prints out the size of each hole (i.e., the space between alocated blocks) on the terminal. NOTE: Really large holes
are probably holes between memory segments. The memory allocation map has to be sorted (see sort/1).

mem_limits(MemoryData) -> {Low, High}
Types:
MenoryData = {tern(), AllocList}
Al'l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
Low = High = int()
Returnsatuple { Low, Hi gh} indicating the lowest and highest address used. The memory allocation map has to
be sorted (see sort/1).

memory data() -> MemoryData | false
Types:
MenmoryData = {term(), AlloclList}
Al |l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
Returns Menor yDat a (a the memory allocation map) if the emulator has been started with the "+M m true"

command-line argument; otherwise, f al se. NOTE:nmenory_dat a/ 0 blocks execution of other processes while
the datais collected. The time it takesto collect the data can be substantial.

memory status(StatusType) -> [StatusInfo] | false
Types:
StatusType = total | allocators | classes | types
Statusinfo = {About, [Info]}
About = aton()
Info = {InfoName, Current, MuxSincelLast, MaxEver}
I nf oNanme = si zes| bl ocks
Current = int()
MaxSi nceLast = int()
MaxEver = int()

Returnsalist of St at usl nf o if the emulator has been started withthe"+M s true" or"+M m t r ue" command-
line argument; otherwise, f al se.

Seetheread memory_statug/1 function for a description of the St at usl nf o term.

60 | Ericsson AB. All Rights Reserved.: Tools

instrument

read memory data(File) -> MemoryData | {error, Reason}
Types.

File = string()

MenoryData = {tern(), AllocList}

Al'l ocLi st = [Desc]

Desc = {int(), int(), int(), PidDesc}

PidDesc = {int(), int(), int()} | undefined

Reads a memory allocation map from the file Fi | e and returns it. The file is assumed to have been created by
store_nenory_dat a/ 1. Theerror codes arethe sameasforfi |l e: consul t/ 1.

read memory status(File) -> MemoryStatus | {error, Reason}
Types:
File = string()
MenmoryStatus = [{StatusType, [Statuslinfo]}]
St at usType total | allocators | classes | types
Statusinfo = {About, [Info]}
About = atom()
Info = {InfoNanme, Current, MuxSi ncelLast, MaxEver}
| nf oNanme = si zes| bl ocks
Current =int()
MaxSi nceLast = int()
MaxEver = int()

Reads memory allocation status from the file Fi | e and returns it. The file is assumed to have been created by
store_nenory_status/ 1. Theerror codesarethe sameasforfil e: consul t/ 1.

When St at usType isal | ocat or s, About isthe allocator that the information is about. When St at usType
ist ypes, About isthe memory block type that the information is about. Memory block types are not described
other than by their name and may vary between emulators. When St at usType iscl asses, About isthe memory
block type class that information is presented about. Memory block types are classified after their use. Currently the
following classes exist:

process_data
Erlang process specific data.
bi nary_data
Erlang binaries.
at om dat a
Erlang atoms.
code _data
Erlang code.
system dat a
Other data used by the system

When | nf oNane issi zes, Curr ent , MaxSi ncelLast , and MaxEver are, respectively, current size, maximum
size since last call to store_nenory_status/ 1 or menory_st at us/ 1 with the specific St at usType,
and maximum size since the emulator was started. When | nf oNane is bl ocks, Current, MaxSi ncelLast,
and MaxEver are, respectively, current number of blocks, maximum number of blocks since last call to
store_nenory_status/1ornenory_status/ 1 with the specific St at us Ty pe, and maximum number of
blocks since the emulator was started.

Ericsson AB. All Rights Reserved.: Tools | 61

instrument

NOTE:A memory block isaccounted for at "thefirst level" allocator. E.g.f i x_al | oc alocatesits memory poolsvia
Il _alloc.Whenafix_all oc block isallocated, neither the block nor the pool in which it resides are accounted
for asmemory allocated vial | _al | oc eventhoughitis.

sort(MemoryData) -> MemoryData
Types:

MenmoryData = {term(), AlloclList}

Al l ocLi st = [Desc]

Desc = {int(), int(), int(), PidDesc}

PidDesc = {int(), int(), int()} | undefined
Sorts a memory allocation map so that the addresses are in ascending order.

store memory data(File) -> true|false
Types:
File = string()
Stores the current memory allocation map on thefile Fi | e. Returnst r ue if the emulator has been started with the
"+M m t rue" command-line argument, and the map was successfully stored; otherwise, f al se. The contents of

the file can later be read using read memory_data/l. NOTE:st or e_nenory_dat a/ O blocks execution of other
processes while the datais collected. The time it takes to collect the data can be substantial.

store memory status(File) -> true|false
Types:
File = string()
Stores the current memory status on the file Fi | e. Returnst r ue if the emulator has been started with the "+M s

true",or"+M m t r ue" command-line arguments, and the data was successfully stored; otherwise, f al se. The
contents of thefile can later be read using read_memory_status/1.

sum_blocks (MemoryData) -> int()
Types:
MenmoryData = {term(), AlloclList}
Al |l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
Returns the total size of the memory blocksin thelist.

type descr(MemoryData, TypeNo) -> TypeDescr | invalid type
Types:

MemoryData = {term(), AlloclList}

Al l ocLi st = [Desc]

Desc = {int(), int(), int(), PidDesc}

PidDesc = {int(), int(), int()} | undefined

TypeNo = int()

TypeDescr = atom() | string()

62 | Ericsson AB. All Rights Reserved.: Tools

instrument

Returns the type description of a type number used in Menor yDat a. Valid TypeNos are in the range returned
by type_no_range/1 on this specific memory allocation map. If TypeNo is an invalid integer, i nval i d_t ype is
returned.

type no range(MemoryData) -> {Min, Max}
Types:
MenmoryData = {tern(), AlloclList}
Al'l ocLi st = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
Mn =int()
Max = int()
Returnsthe memory block type number range used in Menor y Dat a. When the memory allocation map was generated
by an Erlang 5.3/0OTP R9C or newer emulator, all integers T that satisfy M n <= T <= Max are valid type numbers.

When the memory allocation map was generated by a pre Erlang 5.3/OTP R9C emulator, all integersin the range are
not valid type numbers.

See Also
erts alloc(3), erl(1)

Ericsson AB. All Rights Reserved.: Tools | 63

lcnt

lcnt

Erlang module

The | cnt module is used to profile the internal ethread locks in the Erlang Runtime System. With | cnt enabled,
Internal countersin the runtime system are updated each time alock is taken. The counters stores information about
the number of acquisition triesand the number of collisionsthat has occurred during the acquisition tries. The counters
also record the waiting time alock has caused for a blocked thread when a collision has occurred.

The data produced by the lock counters will give an estimate on how well the runtime system will behave from a
parallelizable view point for the scenarios tested. This tool was mainly developed to help erlang runtime devel opers
iron out potential and generic bottlenecks.

Locksinthe emulator are named after what type of resource they protect and where in the emulator they areinitialized,
those arelock 'classes. Most of thoselocks are also instantiated several times, and given unique identifiers, to increase
locking granularity. Typically an instantiated lock protects a digunct set of the resource, i.e ets-tables, processes
or ports. In other cases it protects a specific range of a resource, e.g. pi x_I| ock which protects index to process
mappings, and is given a unique number within the class. A uniquelock inl cnt isreferenced by a name (class) and
anidentifier, { Nanme, 1d}.

Some locks in the system are static and protects global resources, for example bi f _ti mer s and ther un_queue
locks. Other locks are dynamic and not necessarily long lived, for example process locks and ets-table locks.
The statistics data from short lived locks can be stored separately when the locks are deleted. This behavior is
by default turned off to save memory but can be turned on vial cnt: rt _opt ({copy_save, true}). The
| cnt: appl y/ 1, 2, 3 functions enables this behavior during profiling.

Exports

start() -> {ok, Pid} | {error, {already started, Pid}}
Types.
Pid = pid()

Startsthe lock profiler server. The server only act as amedium for the user and performs filtering and printing of data
collectedby | cnt: col | ect/ 1.

stop() -> ok
Stops the lock profiler server.

collect() -> ok
Sameascol | ect (node()).

collect(Node) -> ok
Types:
Node = node()

Collectslock statisticsfrom the runtime system. The function startsaserver if it isnot already started. It then popul ates
the server with lock statistics. If the server held any lock statistics data before the collect then that datais lost.

64 | Ericsson AB. All Rights Reserved.: Tools

lent

Note:

When collection occursthe runtime system transitionsto asingle thread, blocking all other threads. No other tasks
will be scheduled during this operation. Depending on the size of the data this might take a long time (several
seconds) and cause timeouts in the system.

clear() -> ok
Sameascl ear (node()) .

clear(Node) -> ok
Types:
Node = node()
Clearstheinternal lock statistics from the runtime system. This does not clear the data on the server only on runtime

system. All counters for static locks are zeroed, al dynamic locks currently alive are zeroed and all saved locks now
destroyed are removed. It also resets the duration timer.

conflicts() -> ok
Sameasconflicts([]).

conflicts([Option]) -> ok
Types:
Option = {sort, Sort} | {reverse, bool ()} | {thresholds, [Thresholds]}

{print, [Print | {Print, integer()}]} | {max_l ocks, MaxLocks} | {combi ne,
bool ()}

Sort = nane | id | type | tries | colls | ratio | tinme | entry

Thresholds = {tries, integer()} | {colls, integer()} | {tine, integer()}
Print = nane | id | type | entry | tries | colls | ratio | time | duration
MaxLocks = integer() | none

Printsalist of internal locks and its statistics.

For option description, see Icnt:inspect/2.

locations() -> ok
Sameas| ocations([]).

locations([Option]) -> ok

Types:
Option = {sort, Sort} | {thresholds, [Thresholds]} | {print, [Print |
{Print, integer()}]} | {max_l ocks, MaxLocks} | {conbine, bool ()}

Sort = nane | id | type | tries | colls | ratio | tinme | entry

Thresholds = {tries, integer()} | {colls, integer()} | {tine, integer()}
Print = nane | id | type | entry | tries | colls | ratio | time | duration
MaxLocks = integer() | none

Printsalist of internal lock counters by source code locations.

Ericsson AB. All Rights Reserved.: Tools | 65

lcnt

For option description, see Icnt:inspect/2.

inspect(Lock) -> ok
Sameasi nspect (Lock, []).

inspect(Lock, [Option]) -> ok

Types:
Lock = Name | {Name, Id | [1d]}
Name = atom() | pid() | port()

Id = aton() | integer() | pid() | port()

Option = {sort, Sort} | {thresholds, [Thresholds]} | {print, [Print
| {Print, integer()}]} | {max_l ocks, MaxLocks} | {conbine, bool ()} |
{locations, bool ()}

Sort = nane | id | type | tries | colls | ratio | time

Thresholds = {tries, integer()} | {colls, integer()} | {tine, integer()}
Print = name | id | type | entry | tries | colls | ratio | time | duration
MaxLocks = integer() | none

Printsalist of internal lock counters for a specific lock.

Lock Narne and | d for ports and processes are interchangeable with the use of | cnt : swap_pi d_keys/ 0 andis
thereason why pi d() and port () optionscan be usedin both Nane and | d space. Both pids and ports are specia
identifiers with stripped creation and can be recreated with lent: pid/2,3 and Icent: port/1,2.
Option description:
{conbi ne, bool ()}
Combine the statistics from different instances of alock class.
Default: t r ue
{l ocations, bool ()}
Print the statistics by source file and line numbers.
Default: f al se
{max_| ocks, MaxLocks}
Maximum number of locks printed or no limit with none.
Default: 20
{print, PrintOptions}
Printing options:
nane
Named lock or named set of locks (classes). The same name used for initializing the lock in the VM.
id
Internal id for set of locks, not always unique. This could be table name for etstables (db_tab), port id for
ports, integer identifiers for allocators, etc.
type
Typeof lock: r w_nmut ex, mut ex, spi nl ock, rw_spi nl ock or procl ock.

entry
In combination with{| ocat i ons, true} thisoption printsthelock operations sourcefile and line

number entry-points along with statistics for each entry.

tries
Number of acquisitions of thislock.

66 | Ericsson AB. All Rights Reserved.: Tools

lent

colls
Number of collisions when athread tried to acquire thislock. Thisiswhen atrylock is EBUSY, awrite
try on read held rw_lock, atry read on write held rw_lock, athread triesto lock an aready locked lock.
(Internal states supervisesthis).

ratio
The ratio between the number of collisions and the number of tries (acquisitions) in percentage.

time
Accumulated waiting time for this lock. This could be greater than actual wall clock time, itis
accumulated for all threads. Trylock conflicts does not accumulate time.

duration
Percentage of accumulated waiting time of wall clock time. This percentage can be higher than 100%
since accumulated timeis from all threads.

Default: [nane, id,tries,colls,ratio,tine,duration]
{reverse, bool ()}
Reverses the order of sorting.
Default: f al se
{sort, Sort}
Column sorting orders.
Default: ti me
{t hreshol ds, Threshol ds}
Filtering thresholds. Anything values above the threshold value are passed through.
Default: [{tries, 0}, {colls, 0}, {tinme, 0}]

information() -> ok
Prints lcnt server state and generic information about collected lock statistics.

swap pid keys() -> ok
Swaps places on Name and | d space for ports and processes.

load(Filename) -> ok
Types:

Filename = fil ename()
Restores previously saved datato the server.

save(Filename) -> ok
Types:

Filename = fil ename()
Saves the collected data to file.

Convenience functions

The following functions are used for convenience.

Exports

apply(Fun) -> term()
Sameasappl y(Fun, []).

Ericsson AB. All Rights Reserved.: Tools | 67

lcnt

apply(Fun, Args) -> term()
Types.

Fun = fun()

Args = [term)]

Clears the lock counters and then setups the instrumentation to save al destroyed locks. After setup the funis called,
passing the elementsin Ar gs asarguments. When the fun returnsthe statistics areimmediately collected to the server.
After the collection the instrumentation is returned to its previous behavior. The result of the applied fun is returned.

apply(Module, Function, Args) -> term()
Types:

Modul e = atom()

Function = atom()

Args = [term()]

Clears the lock counters and then setups the instrumentation to save all destroyed locks. After setup the function is
called, passing the elementsin Ar gs as arguments. When the function returns the statistics areimmediately collected
to the server. After the collection the instrumentation is returned to its previous behavior. The result of the applied
function is returned.

pid(Id, Serial) -> pid()
Sameaspi d(node(), Id, Serial).

pid(Node, Id, Serial) -> pid()
Types.

Node = node()

Id = integer()

Serial = integer()
Creates a process id with creation 0. Example:

port(Id) -> port()
Sameasport (node(), 1d).

port(Node, Id) -> port()
Types:

Node = node()

Id = integer()
Creates a port id with creation 0.

Internal runtime lock counter controllers

The following functions control the behavior of the internal counters.

Exports

rt collect() -> [lock counter data()]
Sameasrt _col | ect (node()).

68 | Ericsson AB. All Rights Reserved.: Tools

lent

rt collect(Node) -> [lock counter data()]
Types.

Node = node()
Returns alist of raw lock counter data.

rt clear() -> ok
Sameasrt _cl ear (node()).

rt clear(Node) -> ok
Types:
Node = node()

Clear theinterna counters. Same as| cnt : cl ear (Node) .

rt opt({Type, bool()}) -> bool()
Sameasrt _opt (node(), {Type, Opt}).

rt opt(Node, {Type, bool()}) -> bool()
Types.

Node node()

Type = copy_save | process_| ocks

Changes the lock counter behavior and returns the previous behaviour.

Option description:
{copy_save, bool ()}

Enable statistics saving from destroyed locks by copying. This might consume alot of memory.

Default: f al se

{process_I| ocks, bool ()}
Profile process locks.
Default: t r ue

See Also
LCNT User's Guide

Ericsson AB. All Rights Reserved.: Tools | 69

make

make

Erlang module

The module make provides a set of functions similar to the UNIX type Make functions.

Exports

all() -> up to date | error
all(Options) -> up to date | error

Types:
Options = [Option]
Option = noexec | load | netload | <conpiler option>

Thisfunction first looksin the current working directory for afile named Enakef i | e (see below) specifying the set
of modules to compile and the compile optionsto use. If no such fileis found, the set of modules to compile defaults
to all modulesin the current working directory.

Traversing the set of modules, it then recompiles every modulefor which at |east one of thefollowing conditions apply:

e thereisno object file, or
» the source file has been modified since it was last compiled, or,
e aninclude file has been modified since the source file was last compiled.

As aside effect, the function prints the name of each module it triesto compile. If compilation fails for amodule, the
make procedure stops and er r or isreturned.

Opt i ons isalist of make- and compiler options. The following make options exist:

* noexec
No execution mode. Just prints the name of each module that needs to be compiled.
+ |oad

Load mode. Loads all recompiled modules.
* netload
Net load mode. Loads all recompiled modules on all known nodes.

All items in Opti ons that are not make options are assumed to be compiler options and are passed as-is to
conpile:filel2. Options defaultsto[] .

files(ModFiles) -> up to date | error
files(ModFiles, Options) -> up to date | error
Types:
ModFiles = [Module | Fil e]
Modul e = atom()
File = string()
Opti ons [Option]
Option noexec | load | netload | <conpiler option>

files/ 1, 2 doesexactly thesamethingasal | / 0, 1 but for the specified ModFi | es, which isalist of module
or file names. Thefile extension . er | may be omitted.

70 | Ericsson AB. All Rights Reserved.: Tools

make

The Emakef i | e (if it exists) in the current directory is searched for compiler options for each module. If a given
module does not exist in Emakef i | e or if Enakef i | e doesnot exist, the moduleis till compiled.

Emakefile

make: al | /0, 1 and make: fil es/ 1, 2 looksin the current working directory for afile named Enakefi | e. If
it exists, Emakef i | e should contain elements like this:

Modules.
{Modules,Options}.

Modul es isan atom or alist of atoms. It can be

e amodulename eg.fil el

e amodule name in another directory,eg.. . /foo/ fil e3

e aset of modules specified with awildcards, e.g.” fi | e*’

* awildcard indicating al modulesin current directory, i.e.' *'

e alistof any of theabove, eqg.[' file*' ,'../foo/file3" ,'Filed']

Opt i ons isalist of compiler options.

Emakef i | e isread fromtop to bottom. If amodule matches morethan oneentry, thefirst matchisvalid. For example,
the following Enakefi |l e means that fi |l el shall be compiled with the options [debug_info, {i,"../
fo0o0"}],whileal other filesin the current directory shall be compiled with only the debug_i nf o flag.

{'filel', [debug info,{i,"../fo0"}]}.
{'*',[debug_infol}.

Ericsson AB. All Rights Reserved.: Tools | 71

tags

tags

Erlang module

A TAGS fileisused by Emacsto find function and variable definitionsin any sourcefilein large projects. Thismodule
can generate a TAGS file from Erlang source files. It recognises functions, records, and macro definitions.

Exports

file(File [, Options])
Create a TAGS filefor thefileFi | e.

files(FileList [, Options])
Create a TAGSfilefor thefilesinthelist Fi | eLi st .

dir(Dir [, Options])
Createa TAGSfilefor all filesin directory Di r .

dirs(DirList [, Options])
Create a TAGSfilefor al filesin any directory inDi r Li st .

subdir(Dir [, Options])
Descend recursively down the directory Di r and create a TAGS file based on al files found.

subdirs(DirList [, Options])
Descend recursively down all the directoriesin Di r Li st and create a TAGS file based on al files found.

root ([Options])
Create a TAGS file covering al filesin the Erlang distribution.

OPTIONS

The functions above have an optional argument, Opt i ons. Itisalist which can contain the following elements:

e {outfile, NameOf TAGSFi | e} Create a TAGS file named NameOf TAGSFi | e.
e {outdir, NanmeOf D rectory} Createafile named TAGS inthe directory NaneCf Di r ect ory.

The default behaviour isto create afile named TAGS in the current directory.

Examples
e tags:root([{outfile, "root.TAGS"}]).

This command will create afile named r oot . TAGS in the current directory. The file will contain referencesto
all Erlang source filesin the Erlang distribution.

e tags:files(["foo.erl™, "bar.erl", "baz.erl"], [{outdir, "../projectdir"}]).

Herewecreatefilenamed TAGS placed itinthedirectory . . / pr oj ect di r . Thefile containsinformation about
the functions, records, and macro definitions of the threefiles.

72 | Ericsson AB. All Rights Reserved.: Tools

tags

SEE ALSO

e Richard M. Stallman. GNU Emacs Manual, chapter "Editing Programs’, section "Tag Tables". Free Software
Foundation, 1995.

e AndersLindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

Ericsson AB. All Rights Reserved.: Tools | 73

xref

xref

Erlang module

Xref isacross reference tool that can be used for finding dependencies between functions, modules, applications and
releases.

Callshetweenfunctionsareeither local callslikef () , or external callslikem f () . Moduledata, which areextracted
from BEAM files, includelocal functions, exported functions, local callsand external calls. By default, callsto built-in
functions() areignored, but if theoptionbui | t i ns, accepted by some of thismodule'sfunctions,issettot r ue, calls
to BIFsare included aswell. It is the analyzing OTP version that decides what functions are BIFs. Functional objects
are assumed to be called where they are created (and nowhere else). Unresolved calls are callsto appl y or spawn
with variable module, variable function, or variable arguments. ExamplesareM F(a) ,apply(M f, [a]),and
spawmn(m f (), Args). Unresolved cals are represented by calls where variable modules have been replaced
with theatom' $M_EXPR' , variable functions have been replaced with the atom ' $F_EXPR' , and variable number
of arguments have been replaced with the number - 1. The above mentioned examples are represented by calls to
"SM EXPR :'$F EXPR /1,' SM EXPR :f/1,and m ' $F_EXPR /- 1. The unresolved calls are a subset of
the externa calls.

Warning:

Unresolved calls make module data incomplete, which implies that the results of analyses may be invalid.

Applications are collections of modules. The modules BEAM files are located in the ebi n subdirectory of the
application directory. The name of the application directory determines the name and version of the application.
Releases are collections of applicationslocated inthel i b subdirectory of the release directory. Thereis moreto read
about applications and releases in the Design Principles book.

Xref serversareidentified by names, supplied when creating new servers. Each Xref server holds a set of releases, a
set of applications, and a set of moduleswith module data. Xref servers are independent of each other, and all analyses
are evaluated in the context of one single Xref server (exceptions are the functions n1 1 and d/ 1 which do not use
servers at al). The mode of an Xref server determines what module data are extracted from BEAM files as modules
are added to the server. Starting with R7, BEAM files compiled with theoptiondebug_i nf o contain so called debug
information, whichisan abstract representation of thecode. Inf unct i ons mode, whichisthedefault mode, function
cals and line numbers are extracted from debug information. In modul es mode, debug information is ignored if
present, but dependencies between modules are extracted from other parts of the BEAM files. The nodul es modeis
significantly lesstime and space consuming thanthef unct i ons mode, but the analyses that can be done are limited.

An analyzed module is a module that has been added to an Xref server together with its module data. A library
module is a module located in some directory mentioned in the library path. A library module is said to be used if
some of its exported functions are used by some analyzed module. An unknown moduleisamodulethat is neither an
analyzed module nor alibrary module, but whose exported functions are used by some analyzed module. An unknown
function isaused function that isneither local or exported by any analyzed module nor exported by any library module.
An undefined function is an externally used function that is not exported by any analyzed module or library module.
With this notion, alocal function can be an undefined function, namely if it is externally used from some module. All
unknown functions are also undefined functions; thereisafigurein the User's Guide that illustrates this relationship.

Starting with R9C, the module attribute tag depr ecat ed can be used to inform Xref about deprecated functions
and optionally when functions are planned to be removed. A few examples show the idea:

-deprecated({f,1}).
The exported function f / 1 is deprecated. Nothing is said whether f / 1 will be removed or not.

74 | Ericsson AB. All Rights Reserved.: Tools

xref

-deprecated({f,'_'}).

All exported functionsf / 0, f / 1 and so on are deprecated.
-deprecated(module).

All exported functions in the module are deprecated. Equivalentto - deprecated({' _'," _"})..
-deprecated([{ g,1,next_version}]).

The function g/ 1 is deprecated and will be removed in next version.
-deprecated([{ g,2,next_major_release}]).

The function g/ 2 is deprecated and will be removed in next major release.
-deprecated([{ g,3,eventualy}]).

The function g/ 3 is deprecated and will eventually be removed.
-deprecated({"_',' ',eventually}).

All exported functions in the module are deprecated and will eventually be removed.

Before any analysis can take place, module data must be set up. For instance, the cross reference and the unknown
functions are computed when all module data are known. The functions that need complete data (anal yze, q,
vari abl es) take care of setting up data automatically. Module data need to be set up (again) after calls to any of
theadd, repl ace,renove,set | i brary_pat h or updat e functions.

The result of setting up module data is the Call Graph. A (directed) graph consists of a set of vertices and a set of
(directed) edges. The edges represent calls (From, To) between functions, modules, applications or releases. From
issaid to call To, and To is said to be used by From. The vertices of the Call Graph are the functions of all module
data: local and exported functions of analyzed modules; used BIFs; used exported functions of library modules; and
unknown functions. The functions nodul e_i nf o/ 0, 1 added by the compiler are included among the exported
functions, but only when called from some module. The edges are the function calls of all module data. A consequence
of the edges being a set is that there is only one edge if afunction islocally or externally used several times on one
and the same line of code.

The Call Graph isrepresented by Erlang terms (the setsarelists), which is suitable for many analyses. But for analyses
that look at chains of calls, alist representation is much too slow. Instead the representation offered by the di gr aph
moduleis used. The tranglation of the list representation of the Call Graph - or a subgraph thereof - to thedi gr aph
representation does not come for free, so the language used for expressing queries to be described below has a special
operator for thistask and a possibility to savethedi gr aph representation for subsequent analyses.

In addition to the Call Graph there is a graph called the Inter Call Graph. Thisis a graph of calls (From, To) such
that there isa chain of calls from From to To in the Call Graph, and every From and To is an exported function or an
unused local function. The vertices are the same as for the Call Graph.

Calls between modules, applications and releases are also directed graphs. The types of the vertices and edges of
these graphs are (ranging from the most special to the most general): Fun for functions; Mod for modules; App for
applications; and Rel for releases. The following paragraphs will describe the different constructs of the language
used for selecting and analyzing parts of the graphs, beginning with the constants:

* Expression ::= Constants

e Constants::= Consts | Consts: Type | RegExpr

e Consts::= Congtant | [Constant, ...] |{ Constant, ...}

e Congtant ::= Call | Const

e Cdl ::= FunSpec - > FunSpec | { MFA, MFA} | AtomConst - > AtomConst | { AtomConst, AtomConst}

e Const ::= AtomConst | FunSpec | MFA

e AtomConst ::= Application | Module | Release

* FunSpec ::= Module: Function/ Arity

e MFA :={Module, Function, Arity}

* RegExpr ::= RegString : Type | RegFunc | RegFunc: Type

* RegFunc::= RegModule: RegFunction/ RegArity

Ericsson AB. All Rights Reserved.: Tools | 75

xref

* RegModule::= RegAtom

e RegFunction ::= RegAtom

e RegArity ::= RegString | Number | _|-1

* RegAtom ::= RegString | Atom | _

* RegString ::= - aregular expression, as described in ther e module, enclosed in double quotes -

e Type:=Fun|Md |App | Rel

* Function ::= Atom

* Application ::= Atom

* Module::= Atom

* Release::= Atom

e Arity ::=Number |- 1

e Atom ::=- same as Erlang atoms -

e Number ::= - same as hon-negative Erlang integers -

Examples of constants are: ker nel , kernel ->stdli b, [kernel, sasl],[pg -> mesia, {tv,
mesi a}] : Mod.Itisanerror if aninstance of Const does not match any vertex of any graph. If there are more
than one vertex matching an untyped instance of At ontConst , then the one of the most general typeis chosen. A list
of constants is interpreted as a set of constants, all of the same type. A tuple of constants constitute a chain of calls

(which may, but does not have to, correspond to an actual chain of calls of some graph). Assigning atypeto alist or
tuple of Const ant isequivalent to assigning the typeto each Const ant .

Regular expressions are used as a means to select some of the vertices of a graph. A RegExpr consisting of a
RegSt ri ng and atype - an exampleis” xref _. *" : Mbod - isinterpreted as those modules (or applications or
releases, depending on the type) that match the expression. Similarly, aRegFunc isinterpreted asthose vertices of the
Call Graph that match the expression. An exampleis"xref . *":"add_.*"/" (2| 3)", which matches all add
functions of arity two or three of any of the xref modules. Another example, one that matches all functions of arity 10
ormore: : _/"[1-9].+".Here_isanabbreviationfor". *" , thatis, theregular expression that matches anything.

The syntax of variablesis simple:

e Expression::=Variable

e Variable::=- sameasErlang variables -

There are two kinds of variables: predefined variables and user variables. Predefined variables hold set up module
data, and cannot be assigned to but only used in queries. User variables on the other hand can be assigned to, and are

typically used for temporary results while evaluating a query, and for keeping results of queries for use in subsequent
gueries. The predefined variables are (variables marked with (*) are availablein f unct i ons mode only):

E
Call Graph Edges (*).

Y

Call Graph Vertices (*).
M

Modules. All modules: analyzed modules, used library modules, and unknown modules.
A

Applications.
R

Releases.
VE

Module Edges. All module calls.
AE

Application Edges. All application calls.

76 | Ericsson AB. All Rights Reserved.: Tools

xref

RE
Release Edges. All release calls.
L
Loca Functions (*). All local functions of analyzed modules.
X
Exported Functions. All exported functions of analyzed modules and all used exported functions of library
modules.
F
Functions (*).
B
Used BIFs. Bisempty if bui | ti ns isf al se for all analyzed modules.
U

Unknown Functions.
uu
Unused Functions (*). All local and exported functions of analyzed modules that have not been used.
XU
Externally Used Functions. Functions of all modules - including local functions - that have been used in some
external call.
LU
Locally Used Functions (*). Functions of all modules that have been used in some local call.
LC
Loca Cals (*).
XC
External Calls (*).
AM
Analyzed Modules.
UM
Unknown Modules.
LM
Used Library Modules.
uc
Unresolved Calls. Empty in nodul es mode.
EE
Inter Call Graph Edges (*).
DF
Deprecated Functions. All deprecated exported functions and all used deprecated BIFs.
DF_1
Deprecated Functions. All deprecated functions to be removed in next version.
DF_2
Deprecated Functions. All deprecated functions to be removed in next version or next major release.
DF_3
Deprecated Functions. All deprecated functions to be removed in next version, next major release, or later.

These are afew facts about the predefined variables (the set operators + (union) and - (difference) as well asthe cast

operator (Type) are described below):

e FisequaltoL + X

e VisequatoX + L + B + U, whereX, L, Band Uarepairwisedigoint (that is, have no elementsin
common).

e UWJisequaltoV - (XU + LU),whereLUand XU may have elementsin common. Put in another way:

e VisequatoUU + XU + LU.

Ericsson AB. All Rights Reserved.: Tools | 77

xref

e EisequatoLC + XC. Notethat LCand XC may have elementsin common, namely if some functionis
locally and externally used from one and the same function.

e Uisasubset of XU.

* Bisasubset of XU.

* LUisequa torange LC.

e XUisegua torange XC.

* LUisasubset of F.

* UUisasubset of F.

* range UCisasubset of U.

e Misequa toAM + LM + UM where AM LMand UMare pairwise digjoint.

« MEisequa to(Mbd) E.

« AEisequa to(App) E.

e REisequato(Rel) E.

* (Mdd) Visasubset of M Equality holdsif all analyzed modules have some local, exported, or unknown
function.

e (App) Misasubset of A. Equality holdsif all applications have some module.

e (Rel) Aisasubset of R Equality holdsif all releases have some application.

 DF_1isasubset of DF_2.

e DF_2isasubset of DF_3.

 DF_3isasubset of DF.

« Drisasubsetof X + B.

An important notion isthat of conversion of expressions. The syntax of a cast expression is:
* Expression::=(Type) Expression

Theinterpretation of the cast operator depends on the named type Ty pe, the type of Expr essi on, and the structure
of the elements of theinterpretation of Expr essi on. If the named typeisequal to the expression type, no conversion
is done. Otherwise, the conversion is done one step at atime; (Fun) (App) RE, for instance, is equivaent to
(Fun) (Mod) (App) RE.Now assume that the interpretation of Expr essi on isaset of constants (functions,
modules, applications or releases). If the named type is more general than the expression type, say Mod and Fun
respectively, then the interpretation of the cast expression isthe set of modulesthat have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more specia than the expression type, say Fun
and Mbd, then the interpretation is the set of al the functions of the modules (in nodul es mode, the conversion
is partial since the local functions are not known). The conversions to and from applications and releases work
analogoudly. For instance, (App) "xref . *" : Mbd returnsall applications containing at least one module such
that xr ef _ isaprefix of the module name.

Now assume that the interpretation of Expr essi on is a set of calls. If the named type is more general than the
expression type, say Mod and Fun respectively, then theinterpretation of the cast expressionisthe set of calls(M1, M2)
such that the interpretation of the expression contains a call from some function of M1 to some function of M2. If the
named type is more special than the expression type, say Fun and Mbd, then theinterpretation isthe set of all function
cals (F1, F2) such that the interpretation of the expression containsacall (M1, M2) and F1 is afunction of M1 and
F2isafunction of M2 (in modul es mode, there are no functions calls, so acast to Fun alwaysyields an empty set).
Again, the conversions to and from applications and releases work analogously.

The interpretation of constants and variables are sets, and those sets can be used as the basis for forming new sets by
the application of set operators. The syntax:

* Expression ::= Expression BinarySetOp Expression
* BinarySetOp::=+|* |-

78 | Ericsson AB. All Rights Reserved.: Tools

xref

+,* and- areinterpreted asunion, intersection and difference respectively: the union of two sets containsthe elements
of both sets; the intersection of two sets contains the elements common to both sets; and the difference of two sets
contains the elements of the first set that are not members of the second set. The elements of the two sets must be of
the same structure; for instance, a function call cannot be combined with a function. But if a cast operator can make
the elements compatible, then the more general elements are converted to the less general element type. For instance,
M + Fisequivdentto(Fun) M + F,andE - AEisequivdenttoE - (Fun) AE. One more example: X
* xref : Mod isinterpreted as the set of functions exported by the module xr ef ; xref : Mbd is converted
to the more special type of X (Fun, that is) yielding all functions of xr ef , and the intersection with X (all functions
exported by analyzed modules and library modul es) isinterpreted as those functions that are exported by some module
and functions of xr ef .

There are also unary set operators:
e Expression ::= UnarySetOp Expression
e UnarySetOp ::=domai n [range |stri ct

Recall that a call isapair (From, To). donai n applied to a set of calsisinterpreted as the set of all vertices From,
and r ange asthe set of all vertices To. The interpretation of the st ri ct operator is the operand with all calls on
theform (A, A) removed.

The interpretation of the restriction operatorsis a subset of the first operand, a set of calls. The second operand, a
set of vertices, is converted to the type of the first operand. The syntax of the restriction operators:

* Expression ::= Expression RestrOp Expression

* RestrOp:=|
e RestrOp:=| |
e RestrOp:=]||

Theinterpretation in some detail for the three operators:

N
The subset of callsto any of the vertices.

[
The subset of callsto and from any of the vertices. For all sets of calls CS and all sets of vertices VS,
CS ||| VS isequivdenttoCS | VS * CS || VS

Two functions (modules, applications, releases) belong to the same strongly connected component if they call each
other (in)directly. The interpretation of the conmponent s operator is the set of strongly connected components of a
set of calls. The condensat i on of aset of calsisanew set of calls between the strongly connected components
such that there is an edge between two components if there is some constant of the first component that calls some
constant of the second component.

The subset of calls from any of the vertices.

The interpretation of the of operator is achain of calls of the second operand (a set of calls) that passes throw al of
the vertices of the first operand (atuple of constants), in the given order. The second operand is converted to the type
of thefirst operand. For instance, the of operator can be used for finding out whether afunction calls another function
indirectly, and the chain of calls demonstrates how. The syntax of the graph analyzing operators.

* Expression ::= Expression GraphOp Expression

e GraphOp::=conponent s |[condensati on | of

As was mentioned before, the graph analyses operate on the di gr aph representation of graphs. By default, the
di gr aph representationiscreated when needed (and del eted when no longer used), but it can al so be created explicitly
by use of the cl osur e operator:

* Expression ::= ClosureOp Expression

e ClosureOp::=cl osure

Ericsson AB. All Rights Reserved.: Tools | 79

xref

Theinterpretation of the cl osur e operator isthe transitive closure of the operand.

Therestriction operators are defined for closuresaswell; cl osure E | xref : Mbdisinterpreted asthedirect or
indirect function callsfrom the xr ef module, whiletheinterpretationof E | xref : Mbod istheset of direct cals
from xr ef . If some graph isto be used in several graph analyses, it savestimeto assign thedi gr aph representation
of the graph to a user variable, and then make sure that every graph analysis operates on that variable instead of the
list representation of the graph.

Thelineswhere functions are defined (more precisely: where the first clause begins) and the lines where functions are
used areavailableinf unct i ons mode. Theline numbersrefer to thefileswherethefunctions are defined. Thisholds
also for files included with the - i ncl ude and - i ncl ude_I i b directives, which may result in functions defined
apparently in the sameline. Theline oper ator s are used for assigning line numbersto functions and for assigning sets
of line numbersto function calls. The syntax is similar to the one of the cast operator:

e Expression::=(LineOp) Expression

* Expression ::=(XLineOp) Expression

e LineOp:=Lin|ELin|LLin|XLin

e XLineOp ::= XXL

Theinterpretation of the Li n operator applied to a set of functions assigns to each function the line number where the
function is defined. Unknown functions and functions of library modules are assigned the number 0.

Theinterpretation of some LineOp operator applied to aset of function calls assignsto each call the set of line numbers
where the first function calls the second function. Not al calls are assigned line numbers by all operators:

» theli n operator is defined for Call Graph Edges,

* theLLi n operator is defined for Local Calls.

» the XLi n operator is defined for External Calls.

e theELi n operator is defined for Inter Call Graph Edges.

TheLi n (LLi n, XLi n) operator assignsthelineswhere calls (local calls, external calls) are made. The ELi n operator

assigns to each call (From, To), for which it is defined, every line L such that there is a chain of calls from From to
To beginning withacall onlineL.

The XXL operator is defined for the interpretation of any of the LineOp operators applied to a set of function calls.
Theresult is that of replacing the function call with aline numbered function call, that is, each of the two functions of
the call isreplaced by apair of the function and the line where the function is defined. The effect of the XXL operator
can be undone by the LineOp operators. For instance, (Li n) (XXL) (Lin) Eisequivalentto(Lin) E

The+, - ,* and# operatorsare defined for line number expressions, provided the operands are compatible. TheLineOp
operators are also defined for modules, applications, and releases; the operand is implicitly converted to functions.
Similarly, the cast operator is defined for the interpretation of the LineOp operators.

Theinterpretation of the counting oper ator isthe number of elements of aset. The operator isundefined for closures.
The +, - and * operators are interpreted as the obvious arithmetical operators when applied to numbers. The syntax
of the counting operator:

* Expression ::= CountOp Expression

« CountOp:=#

All binary operators areleft associative; for instance, A | B || Cisequivaentto(A | B) || C Thefollowing
isalist of al operators, in increasing order of precedence:

. +, -
. *
e #

80 | Ericsson AB. All Rights Reserved.: Tools

xref

o of

* (Type)
e closure,component s, condensati on,domai n,range, stri ct

Parentheses are used for grouping, either to make an expression more readable or to override the default precedence
of operators:

* Expression ::=(Expression)

A query isanon-empty sequence of statements. A statement is either an assignment of auser variable or an expression.
The value of an assignment is the value of the right hand side expression. It makes no sense to put a plain expression
anywhere else but last in queries. The syntax of queriesis summarized by these productions:

¢ Query ::= Statement, ...
e Statement ::= Assignment | Expression
* Assignment ::= Variable: = Expression | Variable = Expression

A variable cannot be assighed a new value unless first removed. Variables assigned to by the = operator are removed
at the end of the query, while variables assigned to by the: = operator can only beremoved by callstof or get . There
are no user variables when module data need to be set up again; if any of the functions that make it necessary to set
up module dataagain is called, all user variables are forgotten.

Types

application() = atom()

arity() = int() | -1

bool() = true | false

call() = {atom(), atom()} | funcall()

constant() = mfa() | module() | application() | release()
directory() = string()

file() = string()

funcall() = {mfa(), mfa()}

function() = atom()

int() = integer() >= 0

library() = atom()

library path() = path() | code path

mfa() = {module(), function(), arity()}

mode() = functions | modules

module() = atom()
release() = atom()
string position() =
variable() = atom()
xref() = atom() | pid()

int() | at end

Exports

add application(Xref, Directory [, Options]) -> {ok, application()} | Error
Types.
Directory = directory()
Error = {error, nodul e(), Reason}
Options = [Option] | Option
Option = {builtins, bool ()} | {nanme, application()} | {verbose, bool ()}
{war ni ngs, bool ()}

Ericsson AB. All Rights Reserved.: Tools | 81

xref

Reason = {application_clash, {application(), directory(), directory()}}
| {file_error, file(), error()} | {invalid_filename, tern()} |
{invalid options, term()} | - see also add _directory -

Xref = xref()
Adds an application, the modules of the application and module data of the modules to an Xref server. The modules

will be members of the application. The default is to use the base name of the directory with the version removed as
application name, but this can be overridden by the narre option. Returns the name of the application.

If the given directory has a subdirectory named ebi n, modules (BEAM files) are searched for in that directory,
otherwise modules are searched for in the given directory.

If the mode of the Xref server isf unct i ons, BEAM filesthat contain no debug information are ignored.

add directory(Xref, Directory [, Options]) -> {ok, Modules} | Error
Types:

Directory = directory()

Error = {error, nodul e(), Reason}

Modul es = [nodul e()]

Options = [Option] | Option

Option = {builtins, bool ()} | {recurse, bool ()} | {verbose, bool ()} |

{war ni ngs, bool ()}

Reason = {file_error, file(), error()} | {invalid_filenane, term()} |
{invalid_options, term()} | {unrecognized file, file()} | - error from
beam | i b: chunks/ 2 -

Xref = xref()

Adds the modules found in the given directory and the modules' data to an Xref server. The default is not to examine
subdirectories, but if theoptionr ecur se hasthevaluet r ue, modules are searched for in subdirectorieson all levels
aswell asin the given directory. Returns a sorted list of the names of the added modules.

The modules added will not be members of any applications.
If the mode of the Xref server isf unct i ons, BEAM filesthat contain no debug information are ignored.

add module(Xref, File [, Options]) -> {ok, module()} | Error

Types:
Error = {error, nodul e(), Reason}
File = file()

Options = [Option] | Option
Option = {builtins, bool ()} | {verbose, bool ()} | {warnings, bool ()}

Reason = {file_error, file(), error()} | {invalid_filenane, tern()} |
{invalid_options, ternm()} | {nodule_clash, {nodule(), file(), file()}} |
{no_debug_info, file()} | - error frombeam.lib: chunks/2 -

Xref = xref()

Adds a module and its module data to an Xref server. The module will not be member of any application. Returns
the name of the module.

If the mode of the Xref server isf unct i ons, and the BEAM file contains no debug information, the error message
no_debug_i nf o isreturned.

82 | Ericsson AB. All Rights Reserved.: Tools

xref

add release(Xref, Directory [, Options]) -> {ok, release()} | Error
Types.
Directory = directory()
Error = {error, nodul e(), Reason}
Options = [Option] | Option
Option = {builtins, bool ()} | {nane, release()} | {verbose, bool ()}
{war ni ngs, bool ()}

Reason = {application_clash, {application(), directory(), directory()}}
| {file_error, file(), error()} | {invalid filenane, term()} |
{invalid_options, term()} | {release_clash, {release(), directory(),
directory()}} | - see also add_directory -

Xref = xref()
Adds arelease, the applications of the release, the modules of the applications, and module data of the modulesto an
Xref server. The applications will be members of the release, and the modules will be members of the applications.

The default is to use the base name of the directory as release name, but this can be overridden by the nane option.
Returns the name of the release.

If the given directory has a subdirectory named | i b, the directories in that directory are assumed to be application
directories, otherwise al subdirectories of the given directory are assumed to be application directories. If there are
several versions of some application, the one with the highest version is chosen.

If the mode of the Xref server isf unct i ons, BEAM filesthat contain no debug information are ignored.

analyze(Xref, Analysis [, Options]) -> {ok, Answer} | Error

Types:
Anal ysi s = undefined function_calls | undefined_functions
| ocal s_not _used | exports_not _used | deprecated function_calls
| {deprecated function_calls, DeprFlag} | deprecated functions
{deprecated_functions, DeprFlag} | {call, FuncSpec} | {use, FuncSpec}
| {nodule_call, MdSpec} | {nodul e_use, MdSpec} | {application_call,
AppSpec} | {application_use, AppSpec} | {release_call, Rel Spec}
{rel ease_use, Rel Spec}

Answer = [term()]

AppSpec = application() | [application()]

DeprFl ag = next_version | next_major_release | eventually
Error = {error, nodul e(), Reason}

FuncSpec = nfa() | [nfa()]

ModSpec = nodul e() | [rnodul e()]

Options = [Option] | Option

Option = {verbose, bool ()}

Rel Spec = release() | [release()]

Reason = {invalid_options, term()} | {parse_error, string_position(),
term)} | {unavailable_analysis, term()} | {unknown_analysis, term()} |
{unknown_constant, string()} | {unknown_variable, variable()}

Xref = xref()

Evaluates a predefined analysis. Returns a sorted list without duplicates of cal | () or const ant (), depending on
the chosen analysis. The predefined analyses, which operate on all analyzed modules, are (analyses marked with (*)
areavailableinf unct i onsmode only):

Ericsson AB. All Rights Reserved.: Tools | 83

xref

undefi ned_function_call s(*)
Returns alist of calls to undefined functions.

undefi ned_functions
Returns alist of undefined functions.

| ocal s_not _used(*)
Returns alist of local functions that have not been locally used.

exports_not_used
Returns alist of exported functions that have not been externally used.

deprecat ed_function_cal |l s(*)
Returns alist of external callsto deprecated functions.

{deprecated_function_calls, DeprFlag}(*)
Returns alist of external calls to deprecated functions. If Depr Fl ag isequal to next _ver si on, calsto
functionsto be removed in next version are returned. If Depr Fl ag isequal tonext _maj or _r el ease,
callsto functions to be removed in next major release are returned as well as callsto functions to be removed
in next version. Finaly, if Depr Fl ag isequal to event ual | y, al callsto functions to be removed are
returned, including callsto functions to be removed in next version or next major release.

deprecat ed_functions
Returns alist of externally used deprecated functions.

{deprecated_functions, DeprFlag}
Returns alist of externally used deprecated functions. If Depr Fl ag isequal to next _ver si on, functions
to be removed in next version are returned. If Depr FI ag isegual to next _maj or _r el ease, functions
to be removed in next major release are returned as well as functions to be removed in next version. Finally,
if Depr Fl ag isequal to event ual | y, al functions to be removed are returned, including functions to be
removed in next version or next major release.

{call, FuncSpec}(*)
Returns alist of functions called by some of the given functions.

{use, FuncSpec} (*)
Returns alist of functions that use some of the given functions.

{nodul e_cal |, MdSpec}
Returns alist of modules called by some of the given modules.

{odul e_use, MbdSpec}
Returns alist of modules that use some of the given modules.

{application_call, AppSpec}
Returns alist of applications called by some of the given applications.

{application_use, AppSpec}
Returns alist of applications that use some of the given applications.

{rel ease_call, Rel Spec}
Returns alist of releases called by some of the given releases.

{rel ease_use, Rel Spec}
Returns alist of releases that use some of the given releases.

d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
Types:
Directory = directory()

Debugl nfoResult = {deprecated, [funcall ()]} | {undefined, [funcall ()]} |
{unused, [nfa()]}

Error = {error, nodul e(), Reason}
NoDebugl nf oResult = {deprecated, [nfa()]} | {undefined, [nfa()]}

Reason = {file_error, file(), error()} | {invalid_filename, term()} |
{unrecogni zed file, file()} | - error frombeamlib: chunks/2 -

84 | Ericsson AB. All Rights Reserved.: Tools

xref

The modules found in the given directory are checked for cals to deprecated functions, calls to undefined functions,
and for unused local functions. The code path is used aslibrary path.

If some of the found BEAM files contain debug information, then those modules are checked and a list of tuplesis
returned. The first element of each tupleis one of:

* deprecat ed, the second element is a sorted list of callsto deprecated functions;

* undefi ned, the second element is a sorted list of calls to undefined functions;

* unused, the second element is a sorted list of unused local functions.

If no BEAM file contains debug information, then alist of tuplesisreturned. Thefirst element of each tupleisone of:

* deprecat ed, the second element is a sorted list of externally used deprecated functions;
e undefi ned, the second element is a sorted list of undefined functions.

forget (Xref) -> ok

forget(Xref, Variables) -> ok | Error

Types:
Error = {error, nodul e(), Reason}
Reason = {not_user_variable, tern()}
Variables = [variable()] | variable()
Xref = xref()

forget/1andf orget/ 2 removeall or some of the user variables of an xref server.

format error(Error) -> Chars

Types.
Error = {error, nodule(), term)}
Chars [char() | Chars]

Given the error returned by any function of this module, the function f or mat _er r or returns adescriptive string of
the error in English. For file errors, the function f or mat _error/ 1 inthefi | e moduleis called.

get default(Xref) -> [{Option, Value}l
get default(Xref, Option) -> {ok, Value} | Error
Types.
Error = {error, nodul e(), Reason}
Option = builtins | recurse | verbose | warnings
Reason = {invalid_options, tern()}
Val ue = bool ()
Xref = xref()

Returns the default values of one or more options.

get library path(Xref) -> {ok, LibraryPath}
Types:

Li braryPath = library_pat h()

Xref = xref()

Returnsthe library path.

Ericsson AB. All Rights Reserved.: Tools | 85

xref

info(Xref) -> [Info]

info(Xref, Category) -> [{Item, [Info]l}]
info(Xref, Category, Items) -> [{Item, [Infol}]
Types:

Application =[] | [application()]
Category = nmodules | applications | releases | libraries

Info = {application, Application} | {builtins, bool ()} | {directory,
directory()} | {library_path, library_path()} | {node, node()} |

{no_anal yzed_nodules, int()} | {no_applications, int()} | {no_calls,

{ NoResol ved, NoUnresol ved}} | {no_function_calls, {NoLocal,

NoResol vedExt ernal , NoUnresol ved}} | {no_functions, {NoLocal, NoExternal}}
| {no_inter _function_calls, int()} | {no_releases, int()} | {rel ease,

Rel ease} | {version, Version}

Item = nmodule() | application() | release() | library()

Items = Item| [lten]

NoLocal = NoExternal = NoResol vedExternal, NoResolved = NoUnresolved =
int()

Rel ease =[] | [release()]

Version = [int()]
Xref = xref()

Thei nf o functions return information as alist of pairs{Tag, term()} in some order about the state and the module
data of an Xref server.

i nf o/ 1 returnsinformation with the following tags (tags marked with (*) areavailableinf unct i ons mode only):

i brary_pat h, thelibrary path;

node, the mode;

no_r el eases, number of releases,

no_appl i cati ons, total number of applications (of all releases);
no_anal yzed_nodul es, total number of analyzed modules;

no_cal | s (*), total number of calls (in all modules), regarding instances of one function call in different lines
as separate calls;

no_function_cal | s (*), total number of local calls, resolved external calls and unresolved calls;
no_functi ons (*), total number of local and exported functions;
no_i nter_function_call s (*), total number of calls of the Inter Call Graph.

i nfo/ 2 andi nf o/ 3 returninformation about all or some of the analyzed modules, applications, releases or library
modules of an Xref server. The following information is returned for every analyzed module:

appl i cati on, an empty list if the module does not belong to any application, otherwise alist of the
application name;

bui | ti ns, whether callsto BIFs are included in the module's data;

di r ect ory, the directory where the module's BEAM fileislocated;

no_cal | s (*), number of cals, regarding instances of one function call in different lines as separate calls;
no_function_cal | s (*), number of local calls, resolved external calls and unresolved calls;
no_functi ons (*), number of local and exported functions;

no_i nter_function_call s (*), number of calls of the Inter Call Graph;

The following information is returned for every application:

86 | Ericsson AB. All Rights Reserved.: Tools

xref

di r ect ory, the directory where the modules BEAM files are located,;
no_anal yzed_nodul es, number of analyzed modules,

no_cal | s (*), number of cals of the application's modules, regarding instances of one function call in
different lines as separate calls;

no_function_cal | s (*), number of local cals, resolved external calls and unresolved calls of the
application's modul es;

no_functi ons (*), number of local and exported functions of the application's modules;
no_i nter_function_calls (*), number of calsof the Inter Call Graph of the application's modules;
r el ease, an empty list if the application does not belong to any release, otherwise alist of the release name;

ver si on, the application's version as alist of numbers. For instance, the directory "kernel-2.6" resultsin the
application name ker nel and the application version [2,6]; "kernel" yields the name ker nel and the version

IE

The following information is returned for every release:

di r ect ory, therelease directory;
no_anal yzed_nodul es, number of analyzed modules,
no_appl i cati ons, number of applications;

no_cal | s (*), number of cals of the release's modules, regarding instances of one function call in different
lines as separate calls;

no_function_cal | s (*), number of local calls, resolved external calls and unresolved calls of the release's
modules;

no_functi ons (*), number of local and exported functions of the release’'s modules;
no_i nter_function_calls (*), number of calls of the Inter Call Graph of the release's modules.

The following information is returned for every library module:

di r ect ory, the directory where the library module's BEAM fileislocated.

For every number of calls, functions etc. returned by the no__ tags, there is a query returning the same number. Listed
below are examples of such queries. Some of the queries return the sum of atwo or more of the no_ tags numbers.
nod (app, r el) refersto any module (application, release).

no_anal yzed_nodul es

e "# AM (info/l)

e "# (Mod) app: App" (application)

o "# (M) rel:Rel" (rdlease)

no_applications

o "# A" (info/l)

no_cal | s. The sum of the number of resolved and unresolved calls:

e "# (XLin) E + # (LLin) E" (info/ll)

e "T=E]| nod:Md, # (LLin) T + # (XLin) T" (module)

e "T E| app:App, # (LLin) T + # (XLin) T" (application)

e "T=E]| rel:Rel, # (LLin) T + # (XLin) T" (release)

no_f uncti ons. Functions in library modules and the functions nodul e_i nf o/ 0, 1 are not counted by
i nfo.Assumingthat"Extra := _:nodule_info/\"(0|1)\" + LM hasbeen evauated, the sum of
the number of local and exported functions are;

e "# (F - Extra)" (info/1)

e "# (F * nod: Mod - Extra)" (module)

Ericsson AB. All Rights Reserved.: Tools | 87

xref

o "# (F * app:App - Extra)" (application)
e "# (F * rel:Rel - Extra)" (release)
e no_function_call s. Thesum of the number of local cals, resolved external calls and unresolved calls:
e "# LC + # XC' (info/l)
e "# LC| nod:Md + # XC | nod: Mod" (module)
e "# LC | app:App + # XC | app: App" (application)
o "# LC| rel:Rel + # XC | nod: Rel" (release)
e no_inter_function_calls
e "# EE" (info/l)
e "# EE | nod: Mod" (module)
o "# EE | app: App" (application)
e "# EE | rel:Rel" (release)
* no_rel eases

. "# R (infoll)

m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
Types:
Debugl nfoResult = {deprecated, [funcall ()]} | {undefined, [funcall ()]}
{unused, [nfa()]}
Error = {error, nodul e(), Reason}
File = file()
Modul e = nodul e()
NoDebugl nf oResult = {deprecated, [nfa()]} | {undefined, [nfa()]}

Reason = {file_error, file(), error()} | {interpreted, nodule()} |
{invalid_filename, ternm()} | {cover_conpiled, nmodule()} | {no_such_nodul e,
modul e()} | - error frombeamlib: chunks/2 -

The given BEAM file (with or without the . beamextension) or the file found by calling code: whi ch(Modul e)
is checked for calls to deprecated functions, calls to undefined functions, and for unused local functions. The code
path is used as library path.

If the BEAM file contains debug information, then alist of tuplesisreturned. Thefirst element of each tupleisone of:
» deprecat ed, the second element is a sorted list of callsto deprecated functions;

« undefi ned, the second element is a sorted list of calls to undefined functions;
* unused, the second element is a sorted list of unused local functions.

If the BEAM file does not contain debug information, then alist of tuplesisreturned. The first element of each tuple
isone of:

e deprecat ed, the second element is a sorted list of externally used deprecated functions;

* undefi ned, the second element is a sorted list of undefined functions.

g(Xref, Query [, Options]) -> {ok, Answer} | Error

Types:
Answer = false | [constant()] | [Call] | [Conponent] | int() | [DefineAt]
| [CallAt] | [AILines]

88 | Ericsson AB. All Rights Reserved.: Tools

xref

Call = call() | ConponentCall

Component Cal I = {Conponent, Conponent}

Conmponent = [constant ()]

DefineAt = {nfa(), LineNunber}

Call At = {funcall (), LineNunbers}

Al'l Lines = {{DefineAt, DefineAt}, LineNunbers}

Error = {error, nodul e(), Reason}

Li neNunbers = [Li neNunber]

Li neNunmber = int()

Options = [Option] | Option

Option = {verbose, bool ()}

Query = string() | atom()

Reason = {invalid options, term()} | {parse_error, string _position(),
term()} | {type_error, string()} | {type_mismatch, string(), string()}

| {unknown_analysis, tern()} | {unknown_constant, string()} |
{unknown_vari able, variable()} | {variable_reassigned, string()}

Xref = xref()

Evaluates a query in the context of an Xref server, and returns the value of the last statement. The syntax of the value
depends on the expression:

A set of callsis represented by a sorted list without duplicatesof cal | () .

A set of constantsis represented by a sorted list without duplicates of const ant () .

A set of strongly connected componentsis a sorted list without duplicates of Conponent .

A set of calls between strongly connected componentsis a sorted list without duplicates of Conrponent Cal | .

A chain of callsisrepresented by alist of const ant () . Thelist contains the From vertex of every cal and
the To vertex of the last call.

The of operator returnsf al se if no chain of calls between the given constants can be found.

The value of the cl osur e operator (thedi gr aph representation) is represented by theatom' ¢l osure() "' .
A set of line numbered functionsis represented by a sorted list without duplicates of Def i neAt .

A set of line numbered function callsis represented by a sorted list without duplicates of Cal | At .

A set of line numbered functions and function callsis represented by a sorted list without duplicates of
Al I Li nes.

Forboth Cal | At andAl | Li nes itholdsthat for nolist elementisLi neNunber s an empty list; such elementshave
been removed. The constants of conponent and the integers of Li neNunber s are sorted and without duplicates.

remove application(Xref, Applications) -> ok | Error
Types:

Applications = application() | [application()]
Error = {error, nodul e(), Reason}

Reason = {no_such_application, application()}
Xref = xref()

Removes applications and their modules and modul e data from an Xref server.

remove module(Xref, Modules) -> ok | Error
Types:

Ericsson AB. All Rights Reserved.: Tools | 89

xref

Error = {error, nodule(), Reason}
Mbdul es = nodul e() | [nodul e()]
Reason = {no_such_nodul e, nodul e()}
Xref = xref()

Removes analyzed modules and modul e data from an Xref server.

remove release(Xref, Releases) -> ok | Error
Types:

Error = {error, nodul e(), Reason}

Reason = {no_such_rel ease, release()}

Rel eases = release() | [rel ease()]

Xref = xref()

Removes releases and their applications, modules and module data from an Xref server.

replace application(Xref, Application, Directory [, Options]) -> {ok,
application()} | Error
Types.

Application = application()

Directory = directory()

Error = {error, nodul e(), Reason}

Options = [Option] | Option

Option = {builtins, bool ()} | {verbose, bool ()} | {warnings, bool ()}

Reason = {no_such_application, application()} |
- see also add_application -

Xref = xref()

Replaces the modules of an application with other modules read from an application directory. Release membership
of the application isretained. Note that the name of the application is kept; the name of the given directory is not used.

replace module(Xref, Module, File [, Options]) -> {ok, module()} | Error
Types:

Error = {error, nodul e(), Reason}

File = file()

Modul e = nodul e()

Options = [Option] | Option

Option = {verbose, bool ()} | {warnings, bool ()}

ReadModul e = nodul e()

Reason = {nodul e_mi smatch, nodul e(), ReadMbdule} | {no_such_nodule,
nodul e()} | - see also add _nodul e -

Xref = xref()

Replaces modul e data of an analyzed module with dataread from aBEAM file. Application membership of the module
is retained, and so is the value of the bui | t i ns option of the module. An error is returned if the name of the read
module differs from the given module.

Theupdat e function is an aternative for updating modul e data of recompiled modules.

90 | Ericsson AB. All Rights Reserved.: Tools

xref

set default(Xref, Option, Value) -> {ok, OldvValue} | Error

set default(Xref, OptionValues) -> ok | Error

Types:
Error = {error, nodule(), Reason}

OptionVal ues = [OptionVval ue] | OptionVal ue

OptionValue = {Option, Val ue}

Option = builtins | recurse | verbose |

Reason = {invalid_options, term()}
Val ue = bool ()
Xref = xref()

war ni ngs

Sets the default value of one or more options. The options that can be set thisway are:

e builtins,withinitial default valuef al se;
e recurse, withinitial default valuef al se;
e verbose, withinitial default valuef al se;
e war ni ngs, with initial default valuet r ue.

Theinitial default values are set when creating an Xref server.

set library path(Xref, LibraryPath [, Options]) -> ok | Error

Types:
Error = {error, nodul e(), Reason}
Li braryPath = library_path()

Options = [Option] | Option

Option = {verbose, bool ()}

Reason = {invalid_options, term()} |
Xref = xref()

{invalid_path, term)}

Setsthelibrary path. If the given path isalist of directories, the set of library modulesis determined by choosing the
first module encountered while traversing the directoriesin the given order, for those modul es that occur in more than

one directory. By default, the library path is an empty list.

The library path code_pat h is used by the functions n1 1 and d/ 1, but can also be set explicitly. Note however
that the code path will be traversed once for each used library module while setting up module data. On the other
hand, if there are only a few modules that are used but not analyzed, using code_pat h may be faster than setting

thelibrary pathto code: get _pat h() .

If the library path is set to code_pat h, the set of library modules is not determined, and the i nf o functions will

return empty lists of library modules.

start(NameOrOptions) -> Return
Types.
NameOr Options = Nanme | Options
Name = atom()
Options = [Option] | Option
Option = {xref_node, node()} | term)

Return = {ok, pid()} | {error, {already_started, pid()}}

Ericsson AB. All Rights Reserved.: Tools | 91

xref

Creates an Xref server. The process may optionally be given aname. The default modeisf unct i ons. Options that
are not recognized by Xref are passed ontogen_server: start/ 4.

start(Name, Options) -> Return
Types:
Name = atom()
Options = [Option] | Option
Option = {xref _node, node()} | term()
Return = {ok, pid()} | {error, {already_started, pid()}}

Creates an Xref server with agiven name. The default modeisf unct i ons. Optionsthat are not recognized by Xref
arepassedontogen_server:start/ 4.

stop(Xref)
Types:

Xref = xref()
Stops an Xref server.

update(Xref [, Options]) -> {ok, Modules} | Error
Types:

Error = {error, nodule(), Reason}

Modul es = [nodul e()]

Options = [Option] | Option

Option = {verbose, bool ()} | {warnings, bool ()}

Reason = {invalid options, term()} | {rnodul e_m smatch, nodul e(),
ReadModul e} | - see also add_nodul e -

Xref = xref()

Replaces the module data of all analyzed modules the BEAM files of which have been modified since last read by an
add function or updat e. Application membership of the modulesisretained, and so isthe value of thebui | ti ns
option. Returns a sorted list of the names of the replaced modules.

variables(Xref [, Options]) -> {ok, [VariableInfo]}
Types:
Options = [Option] | Option
Option = predefined | user | {verbose, bool ()}
Reason = {invalid options, term()}
Vari ablelnfo = {predefined, [variable()]} | {user, [variable()]}
Xref = xref()

Returns a sorted lists of the names of the variables of an Xref server. The default is to return the user variables only.

See Also
beam lib(3), digraph(3), digraph_utils(3), re(3), TOOLS User's Guide

92 | Ericsson AB. All Rights Reserved.: Tools

	Tools
	Tools User's Guide
	cover
	Introduction
	Getting Started With Cover
	Example
	Preparation
	Coverage Analysis
	Call Statistics
	Analysis to File
	Conclusion

	Miscellaneous
	Performance
	Executable Lines
	Code Loading Mechanism

	cprof - The Call Count Profiler
	Example: Background work
	Example: One module
	Example: In the code

	The Erlang mode for Emacs
	Purpose
	Pre-requisites
	Elisp
	Setup on UNIX
	Setup on Windows
	Indentation
	Editing
	Syntax highlighting
	Tags
	Etags
	Shell
	Compilation

	fprof - The File Trace Profiler
	Profiling from the source code
	Profiling a function
	Immediate profiling

	lcnt - The Lock Profiler
	 Enabling lock-counting
	Getting started
	 Example of usage
	 Example with Mnesia Transaction Benchmark
	 Deciphering the output
	See Also

	Xref - The Cross Reference Tool
	Module Check
	Predefined Analysis
	Expressions
	Graph Analysis

	Reference Manual
	cover
	start/0
	start/1
	compile/1
	compile/2
	compile_module/1
	compile_module/2
	compile_directory/0
	compile_directory/1
	compile_directory/2
	compile_beam/1
	compile_beam_directory/0
	compile_beam_directory/1
	analyse/0
	analyse/1
	analyse/1
	analyse/1
	analyse/2
	analyse/2
	analyse/2
	analyse/3
	analyse_to_file/0
	analyse_to_file/1
	analyse_to_file/1
	analyse_to_file/2
	async_analyse_to_file/1
	async_analyse_to_file/2
	async_analyse_to_file/2
	async_analyse_to_file/3
	modules/0
	imported_modules/0
	imported/0
	which_nodes/0
	is_compiled/1
	reset/1
	reset/0
	export/1
	export/2
	import/1
	stop/0
	stop/1
	flush/1

	cprof
	analyse/0
	analyse/1
	analyse/1
	analyse/2
	pause/0
	pause/1
	pause/2
	pause/3
	restart/0
	restart/1
	restart/2
	restart/3
	start/0
	start/1
	start/2
	start/3
	stop/0
	stop/1
	stop/2
	stop/3

	eprof
	start/0
	start_profiling/1
	start_profiling/2
	start_profiling/3
	stop_profiling/0
	profile/1
	profile/2
	profile/1
	profile/2
	profile/3
	profile/4
	profile/5
	profile/6
	analyze/0
	analyze/1
	analyze/2
	log/1
	stop/0

	erlang.el
	fprof
	start/0
	stop/0
	stop/1
	apply/2
	apply/3
	apply/3
	apply/4
	trace/2
	trace/2
	trace/2
	trace/1
	trace/1
	trace/1
	trace/1
	profile/0
	profile/2
	profile/1
	profile/1
	profile/1
	analyse/0
	analyse/2
	analyse/1
	analyse/1
	analyse/1

	instrument
	allocator_descr/2
	block_header_size/1
	class_descr/2
	descr/1
	holes/1
	mem_limits/1
	memory_data/0
	memory_status/1
	read_memory_data/1
	read_memory_status/1
	sort/1
	store_memory_data/1
	store_memory_status/1
	sum_blocks/1
	type_descr/2
	type_no_range/1

	lcnt
	start/0
	stop/0
	collect/0
	collect/1
	clear/0
	clear/1
	conflicts/0
	conflicts/1
	locations/0
	locations/1
	inspect/1
	inspect/2
	information/0
	swap_pid_keys/0
	load/1
	save/1
	apply/1
	apply/2
	apply/3
	pid/2
	pid/3
	port/1
	port/2
	rt_collect/0
	rt_collect/1
	rt_clear/0
	rt_clear/1
	rt_opt/1
	rt_opt/2

	make
	all/0
	all/1
	files/1
	files/2

	tags
	file/1
	files/1
	dir/1
	dirs/1
	subdir/1
	subdirs/1
	root/1

	xref
	add_application/2
	add_directory/2
	add_module/2
	add_release/2
	analyze/2
	d/1
	forget/1
	forget/2
	format_error/1
	get_default/1
	get_default/2
	get_library_path/1
	info/1
	info/2
	info/3
	m/1
	m/1
	q/2
	remove_application/2
	remove_module/2
	remove_release/2
	replace_application/3
	replace_module/3
	set_default/3
	set_default/2
	set_library_path/2
	start/1
	start/2
	stop/1
	update/1
	variables/1

